精英家教网 > 高中数学 > 题目详情
4.sin20°sin10°-cos10°sin70°=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 已知利用诱导公式,两角差的正弦函数公式,特殊角的三角函数值即可计算得解.

解答 解:sin20°sin10°-cos10°sin70°
=cos70°•sin10°-cos10°sin70°
=sin(10°-70°)
=-sin60°
=-$\frac{\sqrt{3}}{2}$.
故选:B.

点评 本题主要考查了诱导公式,两角和的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数$y=\sqrt{3}sin2x+2{cos^2}x-1$的值域是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,有一个水平放置的透明无盖的正三棱柱容器,其中侧棱长为8cm,底面边长为12cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时,测得水深为6cm,如果不计容器的厚度,则球的表面积为(  )
A.36πcm2B.64πcm2C.80πcm2D.100πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.向量$\overrightarrow m=({λ+1,1}),\overrightarrow n=({λ+3,2})$,若$\overrightarrow m∥\overrightarrow n$,则λ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.民大附中的甲、乙两人同时参加某大学的自主招生,在申请材料中提交了某学科10次的考试成绩(满分100分),按照时间顺序记录如下:

(1)根据两组数据画出两人成绩的茎叶图,并通过茎叶图比较两人成绩的平均值及分散程度(不要求计算具体值,直接写出结论即可);
(2)现将两人成绩分为三个等级:
成绩分数[0,70][70,90][90,100]
等级C级B级A级
注:A级高于B级,B级高于C级
假设两人的成绩相互独立,根据所给的数据,以事件发生的频率为相应事件发生的概率,求甲的等级高于乙的等级的概率;
(3)假如你是该大学的招生老师,结合上述数据,决定应录取哪位同学,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知α是第三象限角,且f(α)=$\frac{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}{tan(-α-π)sin(-π-α)}$.
(1)化简f(α);
(2)若cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|2x>1},集合B={x||x|≤2},则A∩B=(  )
A.(0,2]B.[0,2]C.[-2,2]D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C的方程是:x2+y2-2x-4y+m=0,点P(3,-1).
(1)若m=1,直线l过点P且与曲线C只有一个公共点,求直线l的方程;
(2)若曲线C表示圆且被直线x+2y+5=0截得的弦长为2$\sqrt{5}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\left\{\begin{array}{l}|{ln({-x})}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$,若H(x)=f2(x)-2bf(x)+3有8个不同的零点,则实数b的取值范围为($\sqrt{3}$,2].

查看答案和解析>>

同步练习册答案