精英家教网 > 高中数学 > 题目详情
9.已知α是第三象限角,且f(α)=$\frac{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}{tan(-α-π)sin(-π-α)}$.
(1)化简f(α);
(2)若cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,求f(α)的值.

分析 (1)利用诱导公式化解可得f(α);
(2)根据同角三角函数关系式和诱导公式化简即可求值.

解答 解:(1)由f(α)=$\frac{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}{tan(-α-π)sin(-π-α)}$=$\frac{-cosαsinα•(-tanα)}{-tanαsinα}$=-cosα.
(2)∵cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,
∴-sinα=$\frac{1}{5}$,即sinα=-$\frac{1}{5}$,
∵α是第三象限角
∴cosα=-$\frac{2\sqrt{6}}{5}$,
由(1)得:f(α)=-cosα=$\frac{2\sqrt{6}}{5}$.

点评 本题主要考察了同角三角函数关系式和诱导公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某统计部门就“A市汽车价格区间的购买意愿”对100人进行了问卷调查,并将结果制作成频率分布直方图,如图,已知样本中数据在区间[10,15)上的人数与数据在区间[25,30)的人数之比为3:4.
(Ⅰ)求a,b的值.
(Ⅱ)估计A市汽车价格区间购买意愿的中位数;
(Ⅲ)按分层抽样的方法在数据区间[10,15)和[20,25)上接受调查的市民中选取6人参加座谈,再从这6人中随机选取2人作为主要发言人,求在[10,15)的市民中至少有一人被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数$y=sin(2x+\frac{π}{6})$的图象向左平移m(m>0)个单位长度,得到函数y=f(x)图象在区间$[-\frac{π}{12},\frac{5π}{12}]$上单调递减,则m的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=4cosωxsin({ωx+\frac{π}{6}})-2({ω>0})$,若函数相邻最高点间的距离为π.
(1)求ω及f(x)的对称中心;
(2)求f(x)在区间$[{-\frac{π}{6},\frac{π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.sin20°sin10°-cos10°sin70°=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=cosx(sinx+cosx)-\frac{1}{2}$.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)求f(x)在区间$[{-\frac{π}{4},\frac{π}{2}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若变量x,y满足约束条件$\left\{\begin{array}{l}x+2y≤2\\ x+y≥0\\ x≤4\end{array}\right.$,则z=2x+y的最大值为(  )
A.2B.8C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)的定义域为[-2,2],且f(x)在[-2,2]上是增函数,f(1-m)<f(m),则实数m的取值范围为(  )
A.$(\frac{1}{2},+∞)$B.$(-∞,\frac{1}{2})$C.$({\frac{1}{2},2}]$D.$[{-2,\frac{1}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)在区间A上,对?a,b,c∈A,f(a),f(b),f(c)为一个三角形的三边长,则称函数f(x)为“三角形函数”.已知函数f(x)=xlnx+m在区间$[{\frac{1}{e^2},e}]$上是“三角形函数”,则实数m的取值范围为($\frac{{e}^{2}+2}{e}$,+∞).

查看答案和解析>>

同步练习册答案