分析 (1)利用诱导公式化解可得f(α);
(2)根据同角三角函数关系式和诱导公式化简即可求值.
解答 解:(1)由f(α)=$\frac{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}{tan(-α-π)sin(-π-α)}$=$\frac{-cosαsinα•(-tanα)}{-tanαsinα}$=-cosα.
(2)∵cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,
∴-sinα=$\frac{1}{5}$,即sinα=-$\frac{1}{5}$,
∵α是第三象限角
∴cosα=-$\frac{2\sqrt{6}}{5}$,
由(1)得:f(α)=-cosα=$\frac{2\sqrt{6}}{5}$.
点评 本题主要考察了同角三角函数关系式和诱导公式的应用,属于基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 8 | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{1}{2},+∞)$ | B. | $(-∞,\frac{1}{2})$ | C. | $({\frac{1}{2},2}]$ | D. | $[{-2,\frac{1}{2}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com