精英家教网 > 高中数学 > 题目详情
5.已知(x+1)10=a0+a1x+a2x2+…+a10x10,则(a0+a2+a4+a6+a8+a102-(a1+a3+a5+a7+a92的值为(  )
A.0B.1C.-1D.2

分析 根据题意,令x=1,求出a0+a1+a2+…+a10的值,令x=-1,求出a0-a1+a2-a3+…-a9+a10的值,再因式分解后求值.

解答 解:∵(x+1)10=a0+a1x+a2x2+…+a10x10
∴当x=1时,210=a0+a1+a2+…+a10
x=-1时,0=a0-a1+a2-a3+…-a9+a10
∴(a0+a2+a4+a6+a8+a102-(a1+a3+a5+a7+a92
=(a0+a1+a2+a3+…+a9+a10)•(a0-a1+a2-a3+…-a9+a10
=210×0
=0.
故选:A.

点评 本题考查了二项式定理的应用问题,也考查了用特殊值代入求值计算的问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,∠B为直角,DE⊥AB于E,AC⊥DC,设BC=1.
(1)若∠BAC=30°,∠DAC=45°,试求△ADE的各边之长,由此推出75°的三角函数值;
(2)设∠BAC=α,∠DAC=β(α、β,α+β均为锐角),试推出sin(α+β)的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,设甲地到乙地有4条路可走,乙地到丙地有5条路可走,那么由甲地经乙地到丙地,再由丙地经乙地到甲地,共有400种不同的走法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若${∫}_{1}^{a}$(2x+$\frac{1}{x}$)dx=3+ln2且a>1,则实数a的值是(  )
A.2B.3C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若点(p,q),在|p|≤3,|q|≤3中按均匀分布出现,则方程x2+2px-q2+1=0有两个实数根的概率$\frac{36-π}{36}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.将四个编号为1,2,3,4的相同小球放入编号为1,2,3,4的四个盒子中,
(1)若每个盒子放一个小球,求有多少种放法;
(2)若每个盒子放一球,求恰有1个盒子的号码与小球的号码相同的放法种数;
(3)求恰有一个空盒子的放法种数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=x3-3x在区间(a,6-a2)上有最小值,则实数a的取值范围是[-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中内角A,B,C的对边分别为a,b,c,满足a=2,b=2$\sqrt{3}$,A=30°的△ABC的个数(  )
A.0B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=|cosx|•sinx,给出下列四个说法:
①f(x)为奇函数;                    ②f(x)的一条对称轴为x=$\frac{π}{2}$;
③f(x)的最小正周期为π;             ④f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上单调递增;
⑤f(x)的图象关于点(-$\frac{π}{2}$,0)成中心对称.
其中正确说法的序号是①②④.

查看答案和解析>>

同步练习册答案