精英家教网 > 高中数学 > 题目详情
5.在△ABC中,已知b=15,c=5$\sqrt{3}$,B=60°,求∠C.

分析 直接利用正弦定理转化求解即可.

解答 解:在△ABC中,已知b=15,c=5$\sqrt{3}$,B=60°,b>c,则B>C,
由正弦定理可得:sinC=$\frac{csinB}{b}$=$\frac{5\sqrt{3}×\frac{\sqrt{3}}{2}}{15}$=$\frac{1}{2}$,可得C=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题考查正弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知:二项式${(1+\sqrt{2}x)^n}$展开式中所有项的 二项式系数和为64,
(1)求n的值;
(2)若展开式所有项的 系数和为$a+b\sqrt{2}$,其中a,b为有理数,求a和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.f(x)=3x6-2x5+x3+1,按照秦九韶算法计算x=2的函数值时,v4=(  )
A.17B.68C.8D.34

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=\left\{{\begin{array}{l}{{x^{\frac{1}{3}}}}\\{{{10}^x}}\end{array}}\right.,\begin{array}{l}{x<0}\\{x≥0}\end{array}$,则f(-8)+f(lg4)=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在下列四个正方体中,能得出AB⊥CD的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点A是曲线ρ=2cosθ上任意一点,则点A到直线ρsin(θ+$\frac{π}{6}$)=4的距离的最小值是(  )
A.1B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数g(x)=-$\frac{1}{x}$的图象关于点A(-$\frac{1}{2}$,$\frac{1}{2}$)的对称图象为函数y=f(x)的图象.
(1)求y=f(x);
(2)用函数单调性的定义证明y=f(x)在(一1,+∞)上为单调递增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=x+lnx的零点所在的区间是(  )
A.(0,$\frac{1}{e}$)B.(0,1)C.(1,2)D.(1,e)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某商品的售价x(元)和销售量y(件)之间的一组数据如下表所示
 价格x(元) 9 9.5 10 10.5 11
 销售量y(件) 11 10 8 6 5
由散点图可知,销售量y与价格x之间有较好的线性相关关系,且回归直线方程是$\widehat{y}$=-3.2x+a,则实数a=(  )
A.30B.35C.38D.40

查看答案和解析>>

同步练习册答案