精英家教网 > 高中数学 > 题目详情
14.函数f(x)=x+lnx的零点所在的区间是(  )
A.(0,$\frac{1}{e}$)B.(0,1)C.(1,2)D.(1,e)

分析 利用函数的单调性和函数零点的判定定理即可得出.

解答 解:∵函数f(x)=x+lnx单调递增,∴函数f(x)至多有一个零点.
而f($\frac{1}{e}$)=$\frac{1}{e}$-1<0,f(1)=1+0>0,∴f($\frac{1}{e}$)f(1)<0.
由函数零点的判定定理可知:函数f(x)在区间($\frac{1}{e}$,1)内有一个零点.
故选:B.

点评 熟练掌握函数的单调性和函数零点的判定定理是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知α∈[0,$\frac{π}{2}$],且 sin(α-$\frac{π}{4}$)=$\frac{1}{2}$.
(1)求 cos(α-$\frac{π}{4}$)及α的值;
(2)求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,已知b=15,c=5$\sqrt{3}$,B=60°,求∠C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某单位N名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.下面是年龄的分布表:
区间[25,30)[30,35)[35,40)[40,45)[45,50)
人数28ab
(Ⅰ)求正整数a,b,N的值;
(Ⅱ)现要从年龄低于40岁的员工用分层抽样的方法抽取42人,则年龄在第1,2,3组得员工人数分别是多少?
(Ⅲ)为了估计该单位员工的阅读倾向,现对该单位所有员工中按性别比例抽查的40人是否喜欢阅读国学类书籍进行了调查,调查结果如下所示:(单位:人)
喜欢阅读国学类 不喜欢阅读国学类 合计
 男 14 4 18
 女 8 14 22
 合计 22 18 40
根据表中数据,我们能否有99%的把握认为该位员工是否喜欢阅读国学类书籍和性别有关系?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2cos2x$+\sqrt{3}$sin2x
(Ⅰ)求f($\frac{π}{4}$)的值
(Ⅱ)求f(x)的最小正周期及单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=13-8x+$\sqrt{2}$x2,且f′(a)=4,则实数a的值3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R,已知f(x)在x=3处取得极值,
(Ⅰ)求f(x)在点A(1,f(1))处的切线方程
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)在R上单调递减,且f(x)的图象关于原点对称,若f(-3)=2,则满足-2≤f(2x-1)≤2的x的取值范围是(  )
A.[-2,2]B.[-1,1]C.[-1,2]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.掷两枚密度均匀的骰子,掷得两个点数之和为8的概率是(  )
A.$\frac{1}{12}$B.$\frac{1}{11}$C.$\frac{5}{36}$D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案