精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)的定义域为R,对任意的实数x,y,均有f(x+y)=f(x)f(y),且f(x)≠0,当x>0时,f(x)>1.
(1)证明:f(0)=1;
(2)证明:f(x)在R上是增函数;
(3)若f(x-2)•f(2x-x2)>1,求x的取值范围.

分析 (1)利用赋值法,令x=y=0,即可求解,
(2)设x1,x2∈R,且x1>x2,结合当当x>0时,f(x)>1,可得f(x1)>f(x2),进而根据函数单调性的定义,可得函数f(x)在R上的单调性.
(3)利用函数的单调性以及抽象函数的关系进行求解即可.

解答 解:(1)令x=y=0,则f(0+0)=f(0)f(0)=f(0),
∵f(x)≠0,
∴f(0)=1.
(2)∵当x>0时,f(x)>1
∴设x1,x2∈R,且x1>x2
则x1-x2>0,∴f(x1-x2)>1,
∴f(x1)=f[(x1-x2)+x2]=f(x1-x2)f(x2)>f(x2),
∴函数f(x)在R上是单调递增函数.
(3)∵f(0)=1,
∴f(x-2)•f(2x-x2)>1等价为f(x-2)•f(2x-x2)>f(0),
即f(x-2+2x-x2)>f(0),
∵函数f(x)在R上是单调递增函数.
∴x-2+2x-x2>0,
即x2-3x+2<0,
解得1<x<2,
即不等式的解集为(1,2).

点评 本题考查的是函数的单调性证明问题.抽象函数的单调性的判定,以及赋值法的应用,在解答的过程当中充分体现了函数单调性的定义、转化法以及赋值法等知识.考查学生的运算和推理能力,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.不等式x(x-2)≤0的解集用区间表示为[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知△ABC外接圆O的半径为$\frac{3}{2}$,P为圆O上一点,且|$\overrightarrow{BC}$|=1,则$\overrightarrow{BC}$$•\overrightarrow{BP}$的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(1)方程log3(3x-1)=log3(x-1)+log3(3+x)的解是2;
(2)方程lg(4x+2)=1g2x+1g3的解是0,1;
(3)方程log2(x-1)=2-log2(x+1)的解为$\sqrt{5}$;
(4)方程log3(x2-10)=1+log3x的解是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设集合A=(-1,1,3},B={2+1na,a2+4},A∩B={3},则实数a=e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=|x-a|-x.
(1)当a=3时,求函数f(x)的值域;
(2)若g(x)=|x+1|,求不等式g(x)+x>1-f(x)恒成立时a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={a2,a+1,-2},B={a-3,2a-1,a2+1},若A∩B={-2},求实数a的值及A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=x3,则f(x)的单调递增区间为(-∞,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直角梯形ABCD,∠BAD=∠ADC=90°,AB=2AD=2CD=4,沿AC折叠成三棱锥D-ABC,当三棱锥D-ABC体积最大时,其外接球的表面积为(  )
A.$\frac{4}{3}π$B.C.D.16π

查看答案和解析>>

同步练习册答案