精英家教网 > 高中数学 > 题目详情
16.已知△ABC外接圆O的半径为$\frac{3}{2}$,P为圆O上一点,且|$\overrightarrow{BC}$|=1,则$\overrightarrow{BC}$$•\overrightarrow{BP}$的最大值是2.

分析 如图所示,取BC的中点D,分别以BC、OD所在直线建立直角坐标系,则B$(-\frac{1}{2},0)$,C$(\frac{1}{2},0)$.可得OD=$\sqrt{O{B}^{2}-B{D}^{2}}$,令P(x,y),$(-\frac{3}{2}≤x≤\frac{3}{2})$.则$\overrightarrow{BC}$$•\overrightarrow{BP}$═x$+\frac{1}{2}$,即可得出.

解答 解:如图所示,
取BC的中点D,分别以BC、OD所在直线建立直角坐标系,
则B$(-\frac{1}{2},0)$,C$(\frac{1}{2},0)$.
OD=$\sqrt{O{B}^{2}-B{D}^{2}}$=$\sqrt{2}$,
则⊙O的标准方程为:${x}^{2}+(y-\sqrt{2})^{2}=\frac{9}{4}$,
令P(x,y),$(-\frac{3}{2}≤x≤\frac{3}{2})$.
则$\overrightarrow{BC}$$•\overrightarrow{BP}$=(1,0)•$(x+\frac{1}{2},y)$=x$+\frac{1}{2}$≤2,当x=$\frac{3}{2}$时,取等号.
故答案为:2.

点评 本题考查了圆的性质、垂经定理、数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.f(x)为定义在R上的奇函数.当x≤0时.f(x)=log2(2-x)+x-a,a为常数,则f(2)等于(  )
A.1B.-1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式(x+$\frac{1}{2}$)2<logax在x$∈(0,\frac{1}{2})$恒成立,则a的范围是1>a≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设△ABC的内角A,B,C所对的边长为a,b,c,且$\frac{1}{a}$=$\frac{1}{b}$+$\frac{1}{c}$,则sinA的最大值为 (  )
A.$\frac{\sqrt{15}}{8}$B.$\frac{\sqrt{15}}{6}$C.$\frac{\sqrt{5}}{8}$D.$\frac{\sqrt{5}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设A={x|3x-2>7},B={x|x+2≤6},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知:f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{f(x+1),-1≤x<0}\end{array}\right.$.
(1)分别求f(f(-1))、f(f(1))的值;
(2)求当-1≤x<0时,f(x)的表达式,并画出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=3,求下列各式的值:
(1)a-1+a;
(2)a-2+a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)的定义域为R,对任意的实数x,y,均有f(x+y)=f(x)f(y),且f(x)≠0,当x>0时,f(x)>1.
(1)证明:f(0)=1;
(2)证明:f(x)在R上是增函数;
(3)若f(x-2)•f(2x-x2)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.从一群游戏的小孩中抽出k人,一人分一个苹果,让他们返回继续游戏,一段时间后,再从中任取m人,发现其中有n个小孩曾分过苹果,估计一共有小孩多少人(  )
A.k•$\frac{m}{n}$B.k•$\frac{n}{m}$C.k+m-nD.不能估计

查看答案和解析>>

同步练习册答案