精英家教网 > 高中数学 > 题目详情
7.若关于x的方程|x4-x3|=ax在R上存在4个不同的实根,则实数a的取值范围为(  )
A.$({0,\frac{4}{27}})$B.$({0,\frac{4}{27}}]$C.$({\frac{4}{27},\frac{2}{3}})$D.$({\frac{4}{27},\frac{2}{3}}]$

分析 根据方程和函数的关系转化为函数,利用参数分离法,构造函数,求函数的导数,研究函数的单调性和极值,利用数形结合进行求解即可.

解答 解:当x=0时,0=0,∴0为方程的一个根.
当x>0时,方程|x4-x3|=ax等价为a=|x3-x2|,
令f(x)=x3-x2,f′(x)=3x2-2x,
由f′(x)<0得0<x<$\frac{2}{3}$,由f′(x)>0得x<0或x>$\frac{2}{3}$,
∴f(x)在$({0,\frac{2}{3}})$上递减,在$({-∞,0}),({\frac{2}{3},+∞})$上递增,又f(1)=0,
∴当x=$\frac{2}{3}$时,函数f(x)取得极小值f($\frac{2}{3}$)=-$\frac{4}{27}$,则|f(x)|取得极大值|f($\frac{2}{3}$)|=$\frac{4}{27}$,
∴设$g(x)=\frac{{|{{x^4}-{x^3}}|}}{x}=\left\{\begin{array}{l}|{f(x)}|,x>0\\-|{f(x)}|,x<0\end{array}\right.$的图象如下图所示,
则由题可知当直线y=a与g(x)的图象有3个交点时0<a<$\frac{4}{27}$,
此时方程|x4-x3|=ax在R上存在4个不同的实根,
故$a∈({0,\frac{4}{27}})$.
故选:A.

点评 本题主要考查函数与方程的应用,利用数形结合以及导数法是解决本题的关键.综合性较强,运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.定义在R上的函数f(x)、g(x)满足:对任意的实数x都有f(x)=f(|x|),g(-x)+g(x)=0,当x>0时.f′(x)>0,g′(x)<0,则当x<0时,有(  )
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)<0D.f′(x)<0,g′(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+ax,g(x)=f(x)-ax+$\frac{a}{x-1}$.
(1)若函数y=f(x)在x=1处取得极值,求实数a的值;
(2)若函数y=g(x)在(0,$\frac{1}{e}$)内有极值,求实数a的取值范围;
(3)在(2)的条件下,对任意t∈(1,+∞),s∈(0,1).求证:g(t)-g(s)>e-$\frac{1}{e}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})过点({2,\sqrt{2}})$,其焦点在⊙O:x2+y2=4上,A,B是椭圆的左右顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)M,N分别是椭圆C和⊙O上的动点(M,N不在y轴同侧),且直线MN与y轴垂直,直线AM,BM分别与y轴交于点P,Q,求证:PN⊥QN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.抛物线y2=2x上两点A,B,已知AB的中点在直线x=2上,F为抛物线焦点,则|AF|+|BF|=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在区间[-3,3]上随机取一个数x,使得|x+1|-|x-2|≥1成立的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线$ax+\frac{1}{a}y+2=0$与圆x2+y2=r2相切,则圆的半径最大时,a的值是±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数(2+i)(1-i)等于(  )
A.1-iB.2-iC.3+iD.3-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{lnx}{x}$,g(x)=x2-(a+b)x+ab,其中a<b,a,b∈R+
(1)?x∈R+,f(x)≤kx恒成立,求实数k的取值范围;
(2)若g(e)>0,比较ab与ba的大小.

查看答案和解析>>

同步练习册答案