| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
分析 本题利用几何概型求概率.先解绝对值不等式,再利用解得的区间长度与区间[-3,3]的长度求比值即得.
解答 解:利用几何概型,其测度为线段的长度.
由不等式|x+1|-|x-2|≥1 可得 ①$\left\{\begin{array}{l}{x<-1}\\{(-x-1)-(2-x)≥1}\end{array}\right.$,或②$\left\{\begin{array}{l}{-1≤x<2}\\{(x+1)-(2-x)≥1}\end{array}\right.$,
③$\left\{\begin{array}{l}{x≥2}\\{(x+1)-(x-2)≥1}\end{array}\right.$.
解①可得x∈∅,解②可得1≤x<2,解③可得 x≥2.
故原不等式的解集为{x|x≥1},
∴在区间[-3,3]上随机取一个数x使得|x+1|-|x-2|≥1的概率为P=$\frac{3-1}{3-(-3)}$=$\frac{1}{3}$.
故选:B.
点评 本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({0,\frac{4}{27}})$ | B. | $({0,\frac{4}{27}}]$ | C. | $({\frac{4}{27},\frac{2}{3}})$ | D. | $({\frac{4}{27},\frac{2}{3}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{3}{2}$,+∞) | B. | [2$\sqrt{2}$-3,+∞) | C. | [2$\sqrt{2}$-3,$\frac{56}{9}$] | D. | [$\frac{3}{2}$,$\frac{56}{9}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{5}$ | B. | $\sqrt{19}$+$\sqrt{2}$ | C. | 4+$\sqrt{5}$ | D. | 3$\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com