精英家教网 > 高中数学 > 题目详情
1.已知圆C的方程为(x-1)2+y2=1,P是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一点,过P作圆的两条切线,切点为A,B,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围为(  )
A.[$\frac{3}{2}$,+∞)B.[2$\sqrt{2}$-3,+∞)C.[2$\sqrt{2}$-3,$\frac{56}{9}$]D.[$\frac{3}{2}$,$\frac{56}{9}$]

分析 利用圆切线的性质:与圆心切点连线垂直;设出一个角,通过解直角三角形求出PA,PB的长;利用向量的数量积公式表示出$\overrightarrow{PA}$•$\overrightarrow{PB}$,利用三角函数的二倍角公式化简函数,通过换元,再利用基本不等式求出最值.

解答 解:设PA与PB的夹角为2α,
则|PA|=PB|=$\frac{1}{tanα}$,
∴y=$\overrightarrow{PA}$•$\overrightarrow{PB}$=|PA||PB|cos2α=$\frac{1}{ta{n}^{2}α}$•cos2α
=$\frac{1+cos2α}{1-cos2α}$•cos2α.
记cos2α=u,则y=$\frac{u(u+1)}{1-u}$=-3+(1-u)+$\frac{2}{1-u}$≥2$\sqrt{2}$-3,
∵P在椭圆的左顶点时,sinα=$\frac{1}{3}$,∴cos2α=$\frac{7}{9}$,
∴$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值为$\frac{1+\frac{7}{9}}{1-\frac{7}{9}}$•$\frac{7}{9}$=$\frac{56}{9}$,
∴$\overrightarrow{PA}$•$\overrightarrow{PB}$的范围为[2$\sqrt{2}$-3,$\frac{56}{9}$].
故选:C.

点评 本题考查圆的切线的性质、三角函数的二倍角公式、向量的数量积公式、基本不等式求函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.(重点中学做)已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(3,1),离心率e=$\frac{\sqrt{6}}{3}$
(1)求椭圆C的方程;
(2)分别过椭圆C的四个顶点作坐标轴的垂线,围成如图所示的矩形,A,B是所围成的矩形在x轴上方的两个顶点.若P,Q是椭圆C上两个动点,直线OP、OQ与椭圆的另一交点分别为P1、Q1,且直线OP、OQ的斜率之积等于直线OA、0B的斜率之积,试问四边形PQP1Q1的面积是否为定值?若为定值,求出其值;若不为定值,说明理由(0为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在区间[-3,3]上随机取一个数x,使得|x+1|-|x-2|≥1成立的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,是2007年在广州举行的全国少数民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为(  )
A.84,4.84B.84,1.6C.85,2.4D.85,1.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数(2+i)(1-i)等于(  )
A.1-iB.2-iC.3+iD.3-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设O为△ABC的外心,且满足$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC.}$则∠ACB=120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,点A(0,$\sqrt{3}$)和点P都在椭圆C1上,椭圆C2方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=4.
(1)求椭圆C1的方程;
(2)过P作椭圆C1的切线l交椭圆C2于M,N两点,过P作射线PO交椭圆C2于Q点,设$\overrightarrow{OQ}$=λ$\overrightarrow{OP}$;
(i)求λ的值;
(ii)求证:△QMN的面积为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10. 如图,设椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左右焦点分别为F1、F2,过焦点F1的直线交椭圆于A、B两点,若以△ABF2的内切圆的面积为π,设A(x1,y1)、B((x2,y2),则|y1-y2|值为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知中心在原点O,焦点在x轴上的椭圆的一个顶点为B(0,1),B到焦点的距离为2.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P,Q是椭圆上异于点B的任意两点,且BP⊥BQ,线段PQ的中垂线l与x轴的交点为(x0,0),求x0的取值范围.

查看答案和解析>>

同步练习册答案