13£®Èçͼ£¬ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬µãA£¨0£¬$\sqrt{3}$£©ºÍµãP¶¼ÔÚÍÖÔ²C1ÉÏ£¬ÍÖÔ²C2·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=4£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©¹ýP×÷ÍÖÔ²C1µÄÇÐÏßl½»ÍÖÔ²C2ÓÚM£¬NÁ½µã£¬¹ýP×÷ÉäÏßPO½»ÍÖÔ²C2ÓÚQµã£¬Éè$\overrightarrow{OQ}$=¦Ë$\overrightarrow{OP}$£»
£¨i£©Çó¦ËµÄÖµ£»
£¨ii£©ÇóÖ¤£º¡÷QMNµÄÃæ»ýΪ¶¨Öµ£¬²¢Çó³öÕâ¸ö¶¨Öµ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²ÀëÐÄÂʺ͵ãPÔÚÍÖÔ²ÉÏ£¬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²C1µÄ·½³Ì£®
£¨2£©£¨i£©ÉèP£¨m£¬n£©£¬ÔòÓÉ$\overrightarrow{OQ}$=¦Ë$\overrightarrow{OP}$µÃ£ºQ£¨¦Ëm£¬¦Ën£©£¬ÓÉPÔÚÍÖÔ²C1ÉÏ£¬ÄÜÇó³ö¦ËµÄÖµ£®
ÉèÇÐÏßlµÄ·½³ÌΪ£ºy=kx+t£¬ÓëÍÖÔ²ÁªÁ¢£¬µÃ£º£¨4k2+3£©x2+8ktx+4t2-12=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí£¬ÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽ£¬ÄÜÖ¤Ã÷¡÷QMNµÄÃæ»ýΪ¶¨Öµ£¬Õâ¸ö¶¨ÖµÎª18£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬µãA£¨0£¬$\sqrt{3}$£©ºÍµãP¶¼ÔÚÍÖÔ²C1ÉÏ£¬
¡àe=$\frac{1}{2}$£¬¡àa2=4c2=4a2-4b2£¬¡à3a2=4b2£¬ÓÖÓÉÌâÒâÖª£ºb=$\sqrt{3}$£¬¡àa2=4£¬
¡àÍÖÔ²C1µÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®¡­£¨4·Ö£©
£¨2£©£¨i£©ÉèP£¨m£¬n£©£¬ÔòÓÉ$\overrightarrow{OQ}$=¦Ë$\overrightarrow{OP}$µÃ£ºQ£¨¦Ëm£¬¦Ën£©£¬
¡ßQÔÚÍÖÔ²C2ÉÏ£¬¡à$\frac{{¦Ë}^{2}{m}^{2}}{4}+\frac{{¦Ë}^{2}{n}^{2}}{3}$=4
¦Ë2£¨$\frac{{m}^{2}}{4}$+$\frac{{n}^{2}}{3}$£©=4£¬¡ßPÔÚÍÖÔ²C1ÉÏ£¬¡à$\frac{{m}^{2}}{4}+\frac{{n}^{2}}{3}$=1£¬¡à¦Ë2=4£¬Ó֡ߦˣ¼0£¬¡à¦Ë=-2£¬¡­£¨7·Ö£©
Ö¤Ã÷£º£¨ii£©ÉèÇÐÏßlµÄ·½³ÌΪ£ºy=kx+t
ÁªÁ¢·½³Ì×飺$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=kx+t}\end{array}\right.$£¬ÁªÁ¢²¢ÏûÔªÕûÀíµÃ£º£¨4k2+3£©x2+8ktx+4t2-12=0£¬
¡÷=48£¨4k2+3-t2£©=0£¬¡à4k2+3=t2£¬¡­¢Ú
ÁªÁ¢·½³Ì×飺$\left\{\begin{array}{l}{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\\{y=kx+t}\end{array}\right.$£¬ÏûÔªÕûÀíµÃ£º£¨16k2+12£©x2+32ktx+16t2-16¡Á12=0£¬¡­¢Ù
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇ·½³Ì¢ÙµÄÁ½¸ö½â£¬ÓÉΤ´ï¶¨ÀíµÃ£º
x1+x2=$\frac{-32kt}{16{k}^{2}+12}$£¬x1x2=$\frac{16{t}^{2}-16¡Á2}{16{k}^{2}+12}$£¬
|MN|=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}•\frac{16\sqrt{3}•\sqrt{16{k}^{2}+12-{t}^{2}}}{16{k}^{2}+12}$=$\sqrt{1+{k}^{2}}$•$\frac{16\sqrt{3}•\sqrt{12{k}^{2}+9}}{16{k}^{2}+12}$=$\sqrt{1+{k}^{2}}$•$\frac{12}{\sqrt{4{k}^{2}+3}}$£¬
ÉèOµ½Ö±ÏßMNµÄ¾àÀëΪd1£¬Qµ½Ö±ÏßMNµÄ¾àÀëΪd2£¬ÔòÓÉ£¨i£©Öª£ºd2=3d1
d2=3d1=$\frac{3t}{\sqrt{1+{k}^{2}}}$£¬ÓÉ¢ÚÖª£ºt=$\sqrt{4{k}^{2}+3}$£¬¡àd2=$\frac{3\sqrt{4{k}^{2}+3}}{\sqrt{1+{k}^{2}}}$£¬
¡àS¡÷QMN=$\frac{1}{2}$•|MN|•d2=$\frac{1}{2}$•$\sqrt{1+{k}^{2}}$•$\frac{12}{\sqrt{4{k}^{2}+3}}$•$\frac{3\sqrt{4{k}^{2}+3}}{\sqrt{1+{k}^{2}}}$=18
¼´¡÷QMNµÄÃæ»ýΪ¶¨Öµ£¬Õâ¸ö¶¨ÖµÎª18£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éʵÊýÖµµÄÇ󷨣¬¿¼²éÈý½ÇÐÎÃæ»ýΪ¶¨ÖµµÄÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí£¬ÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ln£¨x+1£©£¬g£¨x£©=-x2-ax£®
£¨1£©Èôa=-2£¬É躯ÊýF£¨x£©=$\left\{\begin{array}{l}{g£¨x£©£¬x¡Ü0}\\{f£¨x£©£¬x£¾0}\end{array}\right.$£¬Èô|F£¨x£©|¡Ýmxºã³ÉÁ¢£¬ÇómµÄȡֵ
£¨2£©Èôº¯ÊýG£¨x£©=xf£¨x-1£©+ag£¨x£©+a2xÓÐÁ½¸ö¼«Öµµã£¬x1£¬x2£¨x1£¼x2£©£¬ÇóÖ¤£ºG£¨x1£©£¼0£¬G£¨x2£©£¾-$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èôx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}3x-y-6¡Ü0\\ x-y¡Ý0\\ x+y-2¡Ý0\end{array}\right.$£¬Ôòz=x-2yµÄ×î´óֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªÔ²CµÄ·½³ÌΪ£¨x-1£©2+y2=1£¬PÊÇÍÖÔ²$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1ÉÏÒ»µã£¬¹ýP×÷Ô²µÄÁ½ÌõÇÐÏߣ¬ÇеãΪA£¬B£¬Ôò$\overrightarrow{PA}$•$\overrightarrow{PB}$µÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[$\frac{3}{2}$£¬+¡Þ£©B£®[2$\sqrt{2}$-3£¬+¡Þ£©C£®[2$\sqrt{2}$-3£¬$\frac{56}{9}$]D£®[$\frac{3}{2}$£¬$\frac{56}{9}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÍÖÔ²M£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬AΪ³¤ÖáµÄÒ»¸ö¶¥µã£¬BΪ¶ÌÖáµÄÒ»¸ö¶¥µã£¬FΪÓÒ½¹µã£¬ÇÒAB¡ÍBF£¬ÔòÍÖÔ²MµÄÀëÐÄÂÊeΪ$\frac{\sqrt{5}-1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ö´ÐÐÈçͼµÄ³ÌÐò¿òͼ£¬ÈôÊäÈë1£¬2£¬3£¬ÔòÊä³öµÄÊýÒÀ´ÎÊÇ1£¬2£¬3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÈôABΪ¹ýÍÖÔ²$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1ÖÐÐĵÄÏ߶Σ¬µãA¡¢BΪÍÖÔ²Éϵĵ㣬F1£¬F2·Ö±ðΪÍÖÔ²µÄÁ½¸ö½¹µã£¬ÔòËıßÐÎF1AF2BÃæ»ýµÄ×î´óÖµÊÇ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÉèP£¬Q·Ö±ðΪԲx2+£¨y-3£©2=5ºÍÍÖÔ²$\frac{x^2}{10}$+y2=1Éϵĵ㣬ÔòP£¬QÁ½µã¼äµÄ×î´ó¾àÀëÊÇ£¨¡¡¡¡£©
A£®2$\sqrt{5}$B£®$\sqrt{19}$+$\sqrt{2}$C£®4+$\sqrt{5}$D£®3$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¶¨ÒåÓòΪ[a£¬b]µÄº¯Êýy=f£¨x£©Í¼ÏóµÄÁ½¸ö¶ËµãΪA¡¢B£¬M£¨x£¬y£©ÊÇf£¨x£©Í¼ÏóÉÏÈÎÒâÒ»µã£¬ÆäÖÐx=¦Ëa+£¨1-¦Ë£©b£¬¦Ë¡Ê[0£¬1]£®ÒÑÖªÏòÁ¿$\overrightarrow{ON}$=$¦Ë\overrightarrow{OA}$+£¨1-¦Ë£©$\overrightarrow{OB}$£¬Èô²»µÈʽ|$\overrightarrow{MN}$|¡Ükºã³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©ÔÚ[a£¬b]ÉÏ¡°k½×ÏßÐÔ½üËÆ¡±£¬Èôº¯Êýy=x-$\frac{2}{x}$ÔÚ[1£¬2]ÉÏ¡°k½×ÏßÐÔ½üËÆ¡±£¬ÔòʵÊýkµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[$\sqrt{2}$-1£¬+¡Þ£©B£®[$\sqrt{2}$+1£¬+¡Þ£©C£®[3-2$\sqrt{2}$£¬+¡Þ£©D£®[3+2$\sqrt{2}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸