·ÖÎö £¨1£©ÓÉÍÖÔ²ÀëÐÄÂʺ͵ãPÔÚÍÖÔ²ÉÏ£¬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²C1µÄ·½³Ì£®
£¨2£©£¨i£©ÉèP£¨m£¬n£©£¬ÔòÓÉ$\overrightarrow{OQ}$=¦Ë$\overrightarrow{OP}$µÃ£ºQ£¨¦Ëm£¬¦Ën£©£¬ÓÉPÔÚÍÖÔ²C1ÉÏ£¬ÄÜÇó³ö¦ËµÄÖµ£®
ÉèÇÐÏßlµÄ·½³ÌΪ£ºy=kx+t£¬ÓëÍÖÔ²ÁªÁ¢£¬µÃ£º£¨4k2+3£©x2+8ktx+4t2-12=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí£¬ÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽ£¬ÄÜÖ¤Ã÷¡÷QMNµÄÃæ»ýΪ¶¨Öµ£¬Õâ¸ö¶¨ÖµÎª18£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬µãA£¨0£¬$\sqrt{3}$£©ºÍµãP¶¼ÔÚÍÖÔ²C1ÉÏ£¬
¡àe=$\frac{1}{2}$£¬¡àa2=4c2=4a2-4b2£¬¡à3a2=4b2£¬ÓÖÓÉÌâÒâÖª£ºb=$\sqrt{3}$£¬¡àa2=4£¬
¡àÍÖÔ²C1µÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®¡£¨4·Ö£©
£¨2£©£¨i£©ÉèP£¨m£¬n£©£¬ÔòÓÉ$\overrightarrow{OQ}$=¦Ë$\overrightarrow{OP}$µÃ£ºQ£¨¦Ëm£¬¦Ën£©£¬
¡ßQÔÚÍÖÔ²C2ÉÏ£¬¡à$\frac{{¦Ë}^{2}{m}^{2}}{4}+\frac{{¦Ë}^{2}{n}^{2}}{3}$=4
¦Ë2£¨$\frac{{m}^{2}}{4}$+$\frac{{n}^{2}}{3}$£©=4£¬¡ßPÔÚÍÖÔ²C1ÉÏ£¬¡à$\frac{{m}^{2}}{4}+\frac{{n}^{2}}{3}$=1£¬¡à¦Ë2=4£¬Ó֡ߦˣ¼0£¬¡à¦Ë=-2£¬¡£¨7·Ö£©
Ö¤Ã÷£º£¨ii£©ÉèÇÐÏßlµÄ·½³ÌΪ£ºy=kx+t
ÁªÁ¢·½³Ì×飺$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=kx+t}\end{array}\right.$£¬ÁªÁ¢²¢ÏûÔªÕûÀíµÃ£º£¨4k2+3£©x2+8ktx+4t2-12=0£¬
¡÷=48£¨4k2+3-t2£©=0£¬¡à4k2+3=t2£¬¡¢Ú
ÁªÁ¢·½³Ì×飺$\left\{\begin{array}{l}{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\\{y=kx+t}\end{array}\right.$£¬ÏûÔªÕûÀíµÃ£º£¨16k2+12£©x2+32ktx+16t2-16¡Á12=0£¬¡¢Ù
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇ·½³Ì¢ÙµÄÁ½¸ö½â£¬ÓÉΤ´ï¶¨ÀíµÃ£º
x1+x2=$\frac{-32kt}{16{k}^{2}+12}$£¬x1x2=$\frac{16{t}^{2}-16¡Á2}{16{k}^{2}+12}$£¬
|MN|=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}•\frac{16\sqrt{3}•\sqrt{16{k}^{2}+12-{t}^{2}}}{16{k}^{2}+12}$=$\sqrt{1+{k}^{2}}$•$\frac{16\sqrt{3}•\sqrt{12{k}^{2}+9}}{16{k}^{2}+12}$=$\sqrt{1+{k}^{2}}$•$\frac{12}{\sqrt{4{k}^{2}+3}}$£¬
ÉèOµ½Ö±ÏßMNµÄ¾àÀëΪd1£¬Qµ½Ö±ÏßMNµÄ¾àÀëΪd2£¬ÔòÓÉ£¨i£©Öª£ºd2=3d1
d2=3d1=$\frac{3t}{\sqrt{1+{k}^{2}}}$£¬ÓÉ¢ÚÖª£ºt=$\sqrt{4{k}^{2}+3}$£¬¡àd2=$\frac{3\sqrt{4{k}^{2}+3}}{\sqrt{1+{k}^{2}}}$£¬
¡àS¡÷QMN=$\frac{1}{2}$•|MN|•d2=$\frac{1}{2}$•$\sqrt{1+{k}^{2}}$•$\frac{12}{\sqrt{4{k}^{2}+3}}$•$\frac{3\sqrt{4{k}^{2}+3}}{\sqrt{1+{k}^{2}}}$=18
¼´¡÷QMNµÄÃæ»ýΪ¶¨Öµ£¬Õâ¸ö¶¨ÖµÎª18£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éʵÊýÖµµÄÇ󷨣¬¿¼²éÈý½ÇÐÎÃæ»ýΪ¶¨ÖµµÄÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí£¬ÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽµÄºÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [$\frac{3}{2}$£¬+¡Þ£© | B£® | [2$\sqrt{2}$-3£¬+¡Þ£© | C£® | [2$\sqrt{2}$-3£¬$\frac{56}{9}$] | D£® | [$\frac{3}{2}$£¬$\frac{56}{9}$] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2$\sqrt{5}$ | B£® | $\sqrt{19}$+$\sqrt{2}$ | C£® | 4+$\sqrt{5}$ | D£® | 3$\sqrt{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [$\sqrt{2}$-1£¬+¡Þ£© | B£® | [$\sqrt{2}$+1£¬+¡Þ£© | C£® | [3-2$\sqrt{2}$£¬+¡Þ£© | D£® | [3+2$\sqrt{2}$£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com