精英家教网 > 高中数学 > 题目详情
3.定义域为[a,b]的函数y=f(x)图象的两个端点为A、B,M(x,y)是f(x)图象上任意一点,其中x=λa+(1-λ)b,λ∈[0,1].已知向量$\overrightarrow{ON}$=$λ\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$,若不等式|$\overrightarrow{MN}$|≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”,若函数y=x-$\frac{2}{x}$在[1,2]上“k阶线性近似”,则实数k的取值范围为(  )
A.[$\sqrt{2}$-1,+∞)B.[$\sqrt{2}$+1,+∞)C.[3-2$\sqrt{2}$,+∞)D.[3+2$\sqrt{2}$,+∞)

分析 先得出M、N横坐标相等,再将恒成立问题转化为求函数的最值问题.

解答 解:由题意,M、N横坐标相等,|$\overrightarrow{MN}$|≤k恒成立,即|$\overrightarrow{MN}$|max≤k,
由N在AB线段上,得A(1,-1),B(2,1),
∴直线AB方程为y=2(x-1)-1
∴|$\overrightarrow{MN}$|=|y1-y2|=|x-$\frac{2}{x}$-2(x-1)+1|=|x+$\frac{2}{x}$-3|,
∵x∈[1,2],∴x+$\frac{2}{x}$∈[2$\sqrt{2}$,3]
∴x+$\frac{2}{x}$-3∈[2$\sqrt{2}$-3,0]
∴|$\overrightarrow{MN}$|max=3-2$\sqrt{2}$
∴k≥3-2$\sqrt{2}$.
故选:C.

点评 本题考查向量知识的运用,考查基本不等式的运用,解答的关键是将已知条件进行转化,同时应注意恒成立问题的处理策略.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,点A(0,$\sqrt{3}$)和点P都在椭圆C1上,椭圆C2方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=4.
(1)求椭圆C1的方程;
(2)过P作椭圆C1的切线l交椭圆C2于M,N两点,过P作射线PO交椭圆C2于Q点,设$\overrightarrow{OQ}$=λ$\overrightarrow{OP}$;
(i)求λ的值;
(ii)求证:△QMN的面积为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆A:(x+2)2+y2=1,圆B:(x-2)2+y2=49,动圆P与圆A,圆B均相切.
(1)求动圆圆心P的轨迹方程;
(2)已知点N(2,$\frac{5}{3}$),作射线AN,与“P点 轨迹”交于另一点M,求△MNB的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知中心在原点O,焦点在x轴上的椭圆的一个顶点为B(0,1),B到焦点的距离为2.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P,Q是椭圆上异于点B的任意两点,且BP⊥BQ,线段PQ的中垂线l与x轴的交点为(x0,0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在△ABC中,∠B=$\frac{π}{2}$,AB=BC=2,P为AB上一动点,PD∥BC交AC于点D,现将△PDA沿PD翻折至△PDA′,使平面PDA′⊥平面PBCD.
(Ⅰ)若PA=$\frac{1}{2}$,求棱锥A′-PBCD的体积;
(Ⅱ)若点定P为AB的中点,求证:平面A′DC⊥平面A′BC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1的两焦点分别为F1,F2,过F1的直线与椭圆交于A,B两点,则△ABF2的周长为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知p:3x2-4ax+a2<0(a>0),q:$\left\{\begin{array}{l}{{x}^{2}-4x+3<0}\\{{x}^{2}-6x+8≥0}\end{array}\right.$,若p是q的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.一个袋中装有四个大小、形状完全相同的小球,小球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机取两个小球,求取出的两个小球的编号之和不小于5的概率;
(Ⅱ)先从袋中随机取一个小球,记此小球的编号为m,将此小球放回袋中,然后再从袋中随机取一个小球,记该小球的编号为n,求n=m+2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lg(3+x)+lg(3-x).
(1)判断f(x)的奇偶性并加以证明;
(2)判断f(x)的单调性(不需要证明);
(3)解关于m的不等式.f(m)-f(m+1)<0.

查看答案和解析>>

同步练习册答案