(2014•洛阳二模)已知任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有对称中心M(x0,f(x0)),记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x)=0.若函数f(x)=x3﹣3x2,则f(
)+f(
)+f(
)+…+f(
)=( )
A.4027 B.﹣4027 C.8054 D.﹣8054
科目:高中数学 来源:[同步]2014年湘教版选修2-3 8.4列联表独立性分析案例练习卷(解析版) 题型:?????
(2011•杭州二模)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值范围是( )
A.(0,
) B.(
,1) C.(0,
) D.(
,1)
查看答案和解析>>
科目:高中数学 来源:[同步]2014年湘教版选修2-3 8.4列联表独立性分析案例练习卷(解析版) 题型:?????
(2014•黄山二模)甲、乙两名考生在填报志愿时都选中了A、B、C、D四所需要面试的院校,这四所院校的面试安排在同一时间,因此甲、乙都只能在这四所院校中选择一所做志愿,假设每位同学选择各个院校是等可能的,则甲、乙选择同一所院校的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:[同步]2014年湘教版选修2-2 4.2导数的运算练习卷(解析版) 题型:?????
(2014•葫芦岛二模)已知函数f(x)=2x﹣
+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),若x1,x0,x2成等差数列,f′(x)是f(x)的导函数,则( )
A.f′(x0)<0 B.f′(x0)=0
C.f′(x0)>0 D.f′(x0)的符号无法确定
查看答案和解析>>
科目:高中数学 来源:[同步]2014年湘教版选修2-2 4.2导数的运算练习卷(解析版) 题型:?????
(2014•重庆三模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=![]()
,则g(
)+
=( )
A.2011 B.2012 C.2013 D.2014
查看答案和解析>>
科目:高中数学 来源:[同步]2014年湘教版选修2-1 3.9共面与平行练习卷(解析版) 题型:?????
若平面α,β的法向量分别为(﹣1,2,4),(x,﹣1,﹣2),并且α⊥β,则x的值为( )
A.10 B.﹣10 C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:[同步]2014年湘教版选修2-1 3.9共面与平行练习卷(解析版) 题型:?????
如图,单位正方体ABCD﹣A1B1C1D1中,下列说法错误的是( )
![]()
A.BD1⊥B1C
B.若
,则PE∥A1B
C.若点B1、A、D、C在球心为O的球面上,则点A、C在该球面上的球面距离为![]()
D.若
,则A1P、BE、AD三线共点
查看答案和解析>>
科目:高中数学 来源:[同步]2014年湘教版选修2-1 3.4直线的方向向量练习卷(解析版) 题型:选择题
已知等差数列{an}的前n项和为Sn,且S2=10,S5=55,则过点P(n,an)(n∈N*)和Q(n+2,an+2)(n∈N*)的直线的一个方向向量坐标可以是( )
A.(2,4) B.(﹣1,﹣1) C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com