精英家教网 > 高中数学 > 题目详情
8.若x>0,y>0,$\sqrt{x}+\sqrt{y}≤m\sqrt{x+y}$则实数m的最小值为$\sqrt{2}$.

分析 原不等式即为m≥$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$,令z=$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$,两边平方,再由基本不等式可得z的最大值,即可得到m的最小值.

解答 解:不等式$\sqrt{x}+\sqrt{y}≤m\sqrt{x+y}$,即为
m≥$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$,
令z=$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$,则z2=$\frac{x+y+2\sqrt{xy}}{x+y}$≤$\frac{x+y+(x+y)}{x+y}$=2,
即有z≤$\sqrt{2}$,(当且仅当x=y取得最大值),
即有m≥$\sqrt{2}$.即m的最小值为$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查不等式的恒成立问题的解法,考查最值的求法,注意运用基本不等式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知点P(x,y)是抛物线y2=4x上任意一点,Q是圆C:(x+2)2+(y-4)2=1上任意一点,则|PQ|+x的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.焦点为(0,±3)且与双曲线$\frac{x^2}{2}$-y2=1有相同的渐近线的双曲线方程是$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{6}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$,短轴顶点B(0,b),若椭圆内接三角形BMN的重心是椭圆的左焦点F,求椭圆的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a∈R,函数f(x)=x2-2ax+5
(1)若不等式f(x)>0对任意x∈(0,+∞)恒成立,求实数a的取值范围;
(2)若a>1,且函数f(x)的定义域和值域均为[1,a],求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.判断直线l:pcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$与圆C:p=4sinθ的位置关系,若相交,求直线被圆所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P是函数y=sin(x+θ)图象与x轴的一个交点,A,B为P点右侧同一周期上的最大和最小值点,则$\overrightarrow{PA}•\overrightarrow{PB}$=(  )
A.$\frac{{\sqrt{3}{π^2}}}{4}-1$B.$\frac{{3{π^2}}}{4}-1$C.$\frac{{3{π^2}}}{2}-1$D.$\frac{π^2}{2}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某学校高三年级800名学生在一次百米测试中,成绩全部在12秒到17秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[12,13),第二组[13,14),…,第五组[16,17],如图是根据上述分组得到的频率分布直方图.
(1)若成绩小于13秒被认为优秀,求该样本在这次百米测试中成绩优秀的人数;
(2)请估计本年级800名学生中,成绩属于第三组的人数;
(3)若样本中第一组只有一名女生,第五组只有一名男生,现从第一、第五组中各抽取2名学生组成一个实验组,设其中男生人数为ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线y=2x-1和圆O2:x2+y2-4y=0的位置关系是(  )
A.相离B.相交C.外切D.内切

查看答案和解析>>

同步练习册答案