19£®Èçͼ£¬¹ýÔ­µãOµÄÖ±Ïßl1£¬l2·Ö±ðÓëxÖᣬyÖá³É30¡ãµÄ½Ç£¬µãP£¨m£¬n£©ÔÚl1ÉÏÔ˶¯£¬µãQ£¨p£¬q£©ÔÚl2ÉÏÔ˶¯£¬ÇÒ$|PQ|=2\sqrt{2}$£®
£¨¢ñ£©Ç󶯵ãM£¨m£¬p£©µÄ¹ì¼£CµÄ·½³Ì£»
£¨¢ò£©ÉèA£¬BÊǹ켣CÉϲ»Í¬Á½µã£¬ÇÒ${k_{OA}}•{k_{OB}}=-\frac{1}{3}$£¬
£¨¢¡£©Çó$\overrightarrow{OA}•\overrightarrow{OB}$µÄȡֵ·¶Î§£»
£¨¢¢£©Åжϡ÷OABµÄÃæ»ýÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö¸Ã¶¨Öµ£¬²»ÊÇÇë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâµÃµ½Ö±Ïßl1£¬l2µÄ·½³Ì£¬½øÒ»²½µÃµ½P£¬QµÄ×ø±ê£¬ÓÉ$|PQ|=2\sqrt{2}$ÁÐʽÇóµÃ¶¯µãM£¨m£¬p£©µÄ¹ì¼£CµÄ·½³Ì£»
£¨¢ò£©£¨¢¡£©Éè³öA£¬BµÄ×ø±ê£¬µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬ÓÉ${k_{OA}}•{k_{OB}}=-\frac{1}{3}$µÃ$\overrightarrow{OA}•\overrightarrow{OB}=2$£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬Éè³öÖ±Ïß·½³Ì£¬ºÍÍÖÔ²·½³ÌÁªÁ¢ºóÀûÓøùÓëϵÊýµÄ¹ØÏµÇóµÃ$-2¡Ü\overrightarrow{OA}•\overrightarrow{OB}¡Ü2$£»
£¨¢¢£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱֱ½ÓÇó¡÷OABµÄÃæ»ý£¬Ð±ÂÊ´æÔÚʱ£¬ÓÉÈý½ÇÐÎÃæ»ý¹«Ê½½áºÏm2=1+3k2ÇóÃæ»ý£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâÖª${l_1}£ºy=\frac{{\sqrt{3}}}{3}x£¬{l_2}£ºy=-\sqrt{3}x$£¬
¡à${P_{\;}}£¨m£¬\frac{{\sqrt{3}}}{3}m£©£¬Q£¨p£¬-\sqrt{3}p£©$£¬ÓÉ$|PQ|=2\sqrt{2}$£¬µÃ${£¨m-p£©^2}+{£¨\frac{{\sqrt{3}}}{3}m+\sqrt{3}p£©^2}=8$£¬ÕûÀíµÃ$\frac{m^2}{6}+\frac{{p_{\;}^2}}{2}=1$£®
¡à¶¯µãMµÄ¹ì¼£CµÄ·½³Ì$\frac{m^2}{6}+\frac{p^2}{2}=1$£»
£¨¢ò£©£¨¢¡£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ËùÔÚÖ±ÏßΪl£¬
µ±lбÂʲ»´æÔÚʱ£¬ÔòA£¨x1£¬y1£©£¬B£¨x1£¬-y1£©£¬¡à${k_{OA}}=\frac{y_1}{x_1}£¬{k_{OB}}=-\frac{y_1}{x_1}$£¬
ÓÉ${k_{OA}}•{k_{OB}}=-\frac{{{y_1}^2}}{{{x_1}^2}}=-\frac{1}{3}⇒{x_1}^2=3y_1^2$£¬
ÓÖ$\frac{{{x_1}^2}}{6}+\frac{{{y_1}^2}}{2}=1$£¬¡à${y_1}^2=1$£¬
¡à$\overrightarrow{OA}•\overrightarrow{OB}={x_1}{x_2}+{y_1}{y_2}=2y_1^2=2$£»
µ±lбÂÊ´æÔÚʱ£¬Éèl·½³Ìy=kx+m£¬
ÁªÁ¢$\left\{\begin{array}{l}y=kx+m\\{x^2}+3{y^2}=6\end{array}\right.$£¬µÃ£¨1+3k2£©x2+6kmx+3m2-6=0
¡à¡÷=36k2m2-12£¨3k2+1£©£¨m2-2£©=12£¨6k2-m2+2£©£¾0¡­¢Ù
ÇÒ${x_1}+{x_2}=\frac{-6km}{{3{k^2}+1}}£¬{x_1}{x_2}=\frac{{3{m^2}-6}}{{3{k^2}+1}}$£®
ÓÉ${k}_{OA}•{k}_{OB}=\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}=-\frac{1}{3}$£¬µÃx1x2=-3y1y2=-3£¨kx1+m£©£¨kx2+m£©£¬
µÃ£º$£¨1+3{k}^{2}£©{x}_{1}{x}_{2}+3km£¨{x}_{1}+{x}_{2}£©+3{m}^{2}=0$£®
ÕûÀíµÃm2=1+3k2¡­¢Ú
¡à$\overrightarrow{OA}•\overrightarrow{OB}={x_1}{x_2}+{y_1}{y_2}=\frac{2}{3}{x_1}{x_2}=\frac{{2{m^2}-4}}{{1+3{k^2}}}=\frac{{2{m^2}-4}}{m^2}=2-\frac{4}{m^2}$£¬
ÓÉ¢Ù£¬¢ÚµÃm2=1+3k2¡Ý1£¬
¡à$0£¼\frac{4}{m^2}¡Ü4$£¬Ôò$-2¡Ü\overrightarrow{OA}•\overrightarrow{OB}£¼2$£®
¡ß${k_{OA}}•{k_{OB}}=-\frac{1}{3}$£¬¡à$\overrightarrow{OA}•\overrightarrow{OB}¡Ù0$£®
×ÛÉÏ£º$-2¡Ü\overrightarrow{OA}•\overrightarrow{OB}¡Ü2$ÇÒ$\overrightarrow{OA}•\overrightarrow{OB}¡Ù0$£®
£¨¢¢£©ÓÉ£¨¢¡£©Öª£¬lбÂʲ»´æÔÚʱ£¬${S_{¡÷OAB}}=|{x_1}{y_1}|=\sqrt{3}y_1^2=\sqrt{3}$£¬
µ±lбÂÊ´æÔÚʱ£¬
${S}_{¡÷OAB}=\frac{1}{2}|AB|d=\frac{1}{2}\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\sqrt{3}|m|\frac{\sqrt{2+6{k}^{2}-{m}^{2}}}{1+3{k}^{2}}$
½«m2=1+3k2´øÈëÕûÀíµÃ${S_{¡÷OAB}}=\sqrt{3}$£®
¡à¡÷OABµÄÃæ»ýΪ¶¨Öµ$\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏߺÍÔ²×¶ÇúÏßµÄλÖùØÏµ£¬ÑµÁ·ÁËÆ½ÃæÏòÁ¿ÔÚÇó½âÔ²×¶ÇúÏßÎÊÌâÖеÄÓ¦Óã¬Éæ¼°Ö±ÏߺÍÔ²×¶ÇúÏߵĹØÏµÎÊÌ⣬³¤²ÉÓÃÁªÁ¢Ö±Ïß·½³ÌºÍÔ²×¶ÇúÏß·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊý¹ØÏµÇó½â£¬ÌصãÊÇÈëÊÖÒ×µ«¼ÆËãÁ¿´ó£¬ÒªÇó¿¼Éú¾ßÓнÏÇ¿µÄÔËËãÄÜÁ¦£¬ÊÇѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=Asin£¨$\frac{¦Ð}{4}$x+$\frac{¦Ð}{4}$£©£¬x¡ÊR£¬ÇÒf£¨-2015£©=3
£¨1£©ÇóAµÄÖµ£®
£¨2£©Ö¸³öº¯Êýf£¨x£©ÔÚx¡Ê[0£¬8]Éϵĵ¥µ÷Çø¼ä£¨²»ÒªÇó¹ý³Ì£©£®
£¨3£©Èôf£¨$\frac{4a}{¦Ð}$-1£©+f£¨$\frac{4a}{¦Ð}$+1£©=$\frac{3}{5}$£¬a¡Ê[0£¬¦Ð]£¬Çócos2a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=lnx-ax-b£¨a£¬b¡ÊR£©
£¨¢ñ£©Èôº¯Êýf£¨x£©ÔÚx=1´¦È¡µÃ¼«Öµ1£¬Çóa£¬bµÄÖµ
£¨¢ò£©ÌÖÂÛº¯Êýf£¨x£©ÔÚÇø¼ä£¨1£¬+¡Þ£©Éϵĵ¥µ÷ÐÔ
£¨¢ó£©¶ÔÓÚº¯Êýf£¨x£©Í¼ÏóÉÏÈÎÒâÁ½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¨x1£¼x2£©£¬²»µÈʽf¡ä£¨x0£©£¼kºã³ÉÁ¢£¬ÆäÖÐkΪֱÏßABµÄбÂÊ£¬x0=¦Ëx1+£¨1-¦Ë£©x2£¬0£¼¦Ë£¼1£¬Çó¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬ÇÒµ±x£¾0ʱ£¬f£¨x£©=$\left\{\begin{array}{l}cos\frac{¦Ðx}{6}£¬0£¼x¡Ü8\\ lo{g}_{2}x£¬x£¾8\end{array}\right.$£¬Ôòf£¨f£¨-16£©£©=£¨¡¡¡¡£©
A£®$-\frac{1}{2}$B£®$-\frac{{\sqrt{3}}}{2}$C£®$\frac{1}{2}$D£®$\frac{{\sqrt{3}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Ò»¸öµ×ÃæÎªÕýÈý½ÇÐεÄÖ±ÈýÀâÖùµÄÕýÊÓͼºÍ¸©ÊÓͼ£¨µ¥Î»£ºcm£©ÈçͼËùʾ£¬ÔòËüµÄÍâ½ÓÇòµÄ±íÃæ»ýµÈÓÚ$\frac{25¦Ð}{3}$cm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÔÚ²»µÈʽ×é$\left\{\begin{array}{l}{x-y¡Ü0}\\{x+y¡Ý0}\\{y¡Üa}\end{array}\right.$È·¶¨µÄÆ½ÃæÇøÓòÖУ¬Èôz=x+2yµÄ×î´óֵΪ9£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®0B£®3C£®6D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª¸´ÊýzÂú×㣨1-i£©z=i2015£¨ÆäÖÐiΪÐéÊýµ¥Î»£©£¬Ôò$\overline{z}$µÄÐ鲿Ϊ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®-$\frac{1}{2}$C£®$\frac{1}{2}$iD£®-$\frac{1}{2}$i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖª²»µÈʽ×é$\left\{\begin{array}{l}{x¡Ü2}\\{y¡Ý1}\\{x-y¡Ý0}\end{array}\right.$µÄ½â¼¯¼ÇΪD£¬Ôò¶Ô?£¨x£¬y£©¡ÊDʹµÃ2x-yÈ¡×î´óֵʱµÄ×îÓŽâÊÇ£¨¡¡¡¡£©
A£®£¨2£¬1£©B£®£¨2£¬2£©C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª¡÷ABCΪֱ½ÇÈý½ÇÐΣ¬AB¡ÍBC£¬ËıßÐÎABDEΪµÈÑüÌÝÐΣ¬DE¡ÎAB£¬Æ½ÃæABDE¡ÍÆ½ÃæABC£¬AB=BC=2DE=2£®
£¨1£©ÔÚACÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃEF¡ÎÆ½ÃæBCD£¿
£¨2£©ÈôµÈÑüÌÝÐÎABDEµÄ¸ßh=1£¬Çó¶þÃæ½ÇB-CD-EµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸