分析 首先考虑5人随机站成一排,再用插空法求解甲、乙两人不相邻的排法,由古典概型的概率计算公式即可得到答案.
解答 解:5人随机站成一排的排法有A55=120种,
而求甲、乙两人不相邻的排法,可分两个步骤完成,第一步骤先把除甲乙外的其他三人排好,有A33种排法,
第二步将甲乙二人插入前三人形成的四个空隙中,有A42种,
则甲、乙两不相邻的排法有A33A42=72种,
故5人随机站成一排,甲乙两人不相邻的概率是$\frac{72}{120}$=$\frac{3}{5}$.
故答案为:$\frac{3}{5}$.
点评 此题主要考查排列组合及简单的计数问题以及古典概型的概率计算公式,题中应用到插空法,这种思想在求不相邻的问题中应用较广,需要同学们多加注意.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,1] | C. | (0,$\sqrt{2}$) | D. | (0,$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{5}{12}$ | C. | $\frac{7}{12}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | (-∞,-1) | C. | (-1,1) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com