精英家教网 > 高中数学 > 题目详情
11.过(2,2)点与双曲线x2$-\frac{y^2}{4}=1$有共同渐近线的双曲线方程为(  )
A.x2$-\frac{y^2}{4}=-1$B.$\frac{x^2}{4}-{y^2}=1$C.$\frac{x^2}{3}-\frac{y^2}{12}=1$D.$\frac{y^2}{12}-\frac{x^2}{3}=1$

分析 要求的双曲线与双曲线x2-$\frac{{y}^{2}}{4}$=1有共同的渐近线,可设要求的双曲线的标准方程为:x2-$\frac{{y}^{2}}{4}$=λ.把点(2,2)代入可得λ,即可得出.

解答 解:∵要求的双曲线与双曲线x2-$\frac{{y}^{2}}{4}$=1有共同的渐近线,
∴可设要求的双曲线的标准方程为:x2-$\frac{{y}^{2}}{4}$=λ.
把点(2,2)代入可得:λ=4-1=3,
∴要求的双曲线的标准方程为:$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{12}=1$.
故选C.

点评 本题考查了双曲线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+2ax+2,x∈[-5,5]
(1)当a=-1时,求函数的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数
(3)已知函数y=x+$\frac{t}{x}$有如下性质:
如果常数t>0,那么该函数(0,$\sqrt{t}$]上是减函数,在[$\sqrt{t}$,+∞)上是增函数.
利用上述性质,直接写出函数g(x)=$\frac{f(x)}{x}$,x∈(0,5]的单调区间,并求值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.
(Ⅰ)求an及Sn
(Ⅱ)设{bn}是首项为2的等比数列,公比q满足q2-(a4-3)q+S2=0.求{bn}的通项公式及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,正视图和侧视图中的两条虚线都互相垂直且相等,则该几何体的体积是(  )
A.$8-\frac{π}{3}$B.$8-\frac{π}{6}$C.$\frac{20}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{y+1≥0}\\{x+y+1≤0}\end{array}\right.$,则z=2x-y的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图1所示,在矩形ABCD中,AB=4$\sqrt{5}$,AD=2$\sqrt{5}$,BD是对角线,过A点作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到达点P的位置(图2),且PB=2$\sqrt{17}$.
(1)求证:PO⊥平面ABCE;
(2)过点C作一平面与平面PAE平行,作出这个平面,写出作图过程;
(3)在(2)的结论下,求出四棱锥P-ABCE介于这两平行平面间部分的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)={x^{\frac{1}{2}}}-2+{log_2}x$的零点所在区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}}$+4x的值域为(  )
A.[0,16]B.(0,16]C.(16,+∞)D.[16,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在直三棱柱ABC-A1B1C1中,平面A1BC丄侧面A1AB B1,且 AA1=AB=2.
(1)求证:AB丄BC;
(2)若直线AC与面A1BC所成的角为$\frac{π}{6}$,求四棱锥A1-BB1C1C的体积.

查看答案和解析>>

同步练习册答案