精英家教网 > 高中数学 > 题目详情
2.已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.
(Ⅰ)求an及Sn
(Ⅱ)设{bn}是首项为2的等比数列,公比q满足q2-(a4-3)q+S2=0.求{bn}的通项公式及其前n项和Tn

分析 (I)利用等差数列的通项公式与求和公式即可得出.
(II)由(I)得a4=7,S2=4.可得q2-4q+4=0,解得q,再利用等比数列的求和公式即可得出.

解答 解:(I)∵{an}是首项a1=1,公差d=2的等差数列,
∴an=a1+(n-1)d=2n-1.
故Sn=1+3+…+(2n-1)=$\frac{n(1+2n-1)}{2}$=n2
(II)由(I)得a4=7,S2=4.
∵q2-(a4-3)q+S2=0,即q2-4q+4=0,
∴(q-2)2=0,从而q=2.
又∵b1=2,{bn}是公比q=2的等比数列,
∴bn=b1qn-1=2•2n-1=2n
从而{bn}的前n项和Tn=$\frac{2({2}^{n}-1)}{2-1}$=2n+1-2.

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.二进制数11111转换成十进制数是31 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若y=f(x)是定义在[1,8]上的单调递减函数,且f(2t)-f(t+2)<0,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的前n项和为Sn,且${a_3}=\frac{3}{2}$,${S_3}=\frac{9}{2}$.
(1)若a3,m,S3成等比数列,求m值;      
(2)求a1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x2-2x>0},$B=\{x|\frac{x-2}{2x}≤1\}$,则A∩B=(  )
A.[-2,0)B.(-2,0)∪(2,+∞)C.(-∞,-2]∪(2,+∞)D.[-1,0]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)是定义在R上周期为2的奇函数,当x∈(0,1)时,f(x)=4x-1,则f(log4$\frac{1}{32}$)(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设二次函数f(x)=x2+ax+b(a、b∈R).
(1)当b=1时,求函数f(x)在[-1,1]上的值域;
(2)若方程f(x)=0有两个非整数实根,且这两实数根在相邻两整数之间,试证明存在整数k,使得$|{f(k)}|≤\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过(2,2)点与双曲线x2$-\frac{y^2}{4}=1$有共同渐近线的双曲线方程为(  )
A.x2$-\frac{y^2}{4}=-1$B.$\frac{x^2}{4}-{y^2}=1$C.$\frac{x^2}{3}-\frac{y^2}{12}=1$D.$\frac{y^2}{12}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知二次函数f(x)=2x2-(a-2)x-2a2-a,若在区间[0,1]内至少存在一个实数b,使f(b)>0,则实数a的取值范围是(  )
A.(-2,1)B.$(-\frac{1}{2},\;2)$C.$(-2,\;-\frac{1}{2})$D.$(-\frac{1}{2},\;1)$

查看答案和解析>>

同步练习册答案