精英家教网 > 高中数学 > 题目详情
10.已知等比数列{an}的前n项和为Sn,且${a_3}=\frac{3}{2}$,${S_3}=\frac{9}{2}$.
(1)若a3,m,S3成等比数列,求m值;      
(2)求a1的值.

分析 (1)由a3,m,S3成等比数列,得m2=a3•S3,由此能求出m的值.
(2)设等比数列{an}公比为q,由q=1和q≠1两种情况分类讨论,能求出首项.

解答 解:(1)因为a3,m,S3成等比数列,所以 m2=a3•S3…(1分)
因为${a_3}=\frac{3}{2}$,${S_3}=\frac{9}{2}$,所以 ${m^2}=\frac{27}{4}$…(2分)
所以$m=±\frac{{3\sqrt{3}}}{2}$…(4分)
(2)设等比数列{an}公比为q,
①当q=1时,${a_1}={a_2}={a_3}=\frac{3}{2}$,此时${S_3}=\frac{9}{2}$,满足题意,…(6分)
②当q≠1时,依题意得$\left\{\begin{array}{l}{a_1}{q^2}=\frac{3}{2}\\ \frac{{{a_1}(1-{q^3})}}{1-q}=\frac{9}{2}\end{array}\right.$…(8分)
解得$\left\{\begin{array}{l}{a_1}=6\\ q=\frac{1}{2}\end{array}\right.$,综上可得${a_1}=\frac{3}{2}$或a1=6.…(12分)

点评 本题考查实数值的求法,考查数列的首项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.计算下列各式的值 (其中,e为自然对数的底数):
(1)$\sqrt{\frac{25}{9}}-{({\frac{8}{27}})^{\frac{1}{3}}}-{({π+e})^0}+{({\frac{1}{4}})^{-\frac{1}{2}}}$;       
(2)$2lg5+lg4+ln\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+2ax+2,x∈[-5,5]
(1)当a=-1时,求函数的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数
(3)已知函数y=x+$\frac{t}{x}$有如下性质:
如果常数t>0,那么该函数(0,$\sqrt{t}$]上是减函数,在[$\sqrt{t}$,+∞)上是增函数.
利用上述性质,直接写出函数g(x)=$\frac{f(x)}{x}$,x∈(0,5]的单调区间,并求值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)对定义域[-1,1]内的任意实数x,y总有f(x)+f(y)=f(x+y)
(1)证明:f(x)在[-1,1]上是增函数;
(2)解不等式f(x2-1)+f(3-3x)<0
(3)若f(x)≤t2-2at+1对任意x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某房地产公司新建小区有A、B两种户型住宅,其中A户型住宅每套面积为100平方米,B户型住宅每套面积为80平方米.该公司准备从两种户型住宅中各拿出12套销售给内部员工,下表是这24套住宅每平方米的销售价格:(单位:万元/平方米):
房41017123456789101112
A户型2.62.72.82.82.93.22.93.13.43.33.43.3
B户型3.63.73.73.93.8.3.94.34.44.14.24.34.5
(Ⅰ)这24套住宅中,求一套B户型住宅总价格超过任意一套A户型住宅总价格的概率;
(Ⅱ)该公司决定对上述24套住房通过抽签方式销售,购房者根据自己的需求只能在其中一种户型中通过抽签方式随机获取房号,每位购房者只有一次抽签机会.
小明是第一位抽签的员工,经测算其购买能力最多为320万元,抽签后所抽得住房价格在其购买能力范围内则确定购买,否则,将放弃此次购房资格.为了使其购房成功的概率更大,他应该选择哪一种户型抽签?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=1km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D间的距离.(计算结果精确到0.1km)参考数据:$\sqrt{2}≈1.41$,$\sqrt{6}$≈2.45.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.
(Ⅰ)求an及Sn
(Ⅱ)设{bn}是首项为2的等比数列,公比q满足q2-(a4-3)q+S2=0.求{bn}的通项公式及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,正视图和侧视图中的两条虚线都互相垂直且相等,则该几何体的体积是(  )
A.$8-\frac{π}{3}$B.$8-\frac{π}{6}$C.$\frac{20}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}}$+4x的值域为(  )
A.[0,16]B.(0,16]C.(16,+∞)D.[16,+∞)

查看答案和解析>>

同步练习册答案