精英家教网 > 高中数学 > 题目详情
15.如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=1km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D间的距离.(计算结果精确到0.1km)参考数据:$\sqrt{2}≈1.41$,$\sqrt{6}$≈2.45.

分析 在△ACD中,∠DAC=30°推断出CD=AC,同时根据CB是△CAD底边AD的中垂线,判断出BD=BA,进而在△ABC中利用余弦定理求得AB答案可得.

解答 解:在△ACD中,∠DAC=30°,
∠ADC=60°-∠DAC=30°,
所以CD=AC=0.1.
又∠BCD=180-60°-60°=60°,
故CB是△CAD底边AD的中垂线,
所以BD=BA、
在△ABC中,AB=$\frac{ACsin60°}{sin15°}$=$\frac{3\sqrt{2}+\sqrt{6}}{20}$,
因此,BD=$\frac{3\sqrt{2}+\sqrt{6}}{20}$≈0.3km.
故B、D的距离约为0.3km.

点评 本题主要考查了解三角形的实际应用.考查学生分析问题解决问题的能力.综合运用基础知识的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知点P(x,y)满足x2+y2<2,则满足到直线x-y+2$\sqrt{2}$=0的距离d∈[1,3]的点P概率为(  )
A.$\frac{1}{2}+\frac{π}{2}$B.$\frac{1}{2}-\frac{π}{2}$C.$\frac{1}{4}-\frac{1}{2π}$D.$\frac{1}{4}+\frac{1}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.集合{x∈N|x≤3}还可以表示为(  )
A.{0,1,2,3}B.{2,1,3}C.{1,2,3,4}D.{x|0≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合M={x|x>1},P={x|x2-6x+9=0},则下列关系中正确的是(  )
A.M=PB.P?MC.M?PD.M∪P=R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的前n项和为Sn,且${a_3}=\frac{3}{2}$,${S_3}=\frac{9}{2}$.
(1)若a3,m,S3成等比数列,求m值;      
(2)求a1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow a=(1,2),\overrightarrow b=(1,0),\overrightarrow c=(3,-4)$,若λ为实数且$(\overrightarrow a+λ\overrightarrow b)$∥$\overrightarrow c$,则λ=$-\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)是定义在R上周期为2的奇函数,当x∈(0,1)时,f(x)=4x-1,则f(log4$\frac{1}{32}$)(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.方程(a-1)x2+(2-a)y2=(a-1)(2-a)中,当1<a<2时,它表示(  )
A.椭圆或圆B.双曲线C.椭圆D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(sinx+cosx)2+2cos2x
(1)求f(x)的单调递减区间   
(2)求f(x)在$x∈[0,\frac{π}{2}]$时的值域
(3)叙述由$y=\sqrt{2}sinx$到y=f(x)的图象的变换过程.

查看答案和解析>>

同步练习册答案