精英家教网 > 高中数学 > 题目详情
已知f(x)=lnx+
1-x2
的定义域为
 
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:直接由根式内部的代数式大于等于0,对数式的真数大于0联立取交集即可.
解答: 解:要使函数有意义,则
x>0
1-x2≥0

解得0<x≤1.
所以原函数的定义域为(0,1].
故答案为:(0,1].
点评:本题考查了函数的定义域及其求法,函数的定义域就是使函数解析式有意义的自变量x的取值范围,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的各项均为整数,且公差d>0,a3=4,若a1,a3,ak(k>3)构成等比数列{bn}的前三项.
(1)当k=7,a1=2时,求数列的通项公式an,bn
(2)将数列{an}和{bn}的相同的项去掉,剩下的项依次构成新的数列{cn},设其前n项和为Sn,求使得不等式
b1
S1
+
b2
S4
+
b3
S11
+…+
bn
S2n+1-(n+2)
126
127
成立的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的定义如表:
x123x123
f(x)231g(x)321
则方程g(f(x))=x的解集是(  )
A、ΦB、{3}
C、{2}D、{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

对于椭圆
x2
9
+
y2
8
=1,有下列命题:
①椭圆的离心率是
1
9

②椭圆的长轴长为6,短轴长为4,焦距为2;
③椭圆上的点P到点(1,0)的距离与到直线x=9的距离比为
1
3

④直线mx-y-2m+1=0与椭圆一定有两个交点;
⑤椭圆上的点与两个焦点构成的三角形的面积的最大值为2.
其中正确的命题有
 
(填所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,当n≥2时,满足an-an-1+2an•an-1=0.
(Ⅰ)求证:数列{
1
an
}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令bn=
an
2n+1
,数列{bn}的前n项和为Tn,求使得2Tn(2n+1)≤m(n2+3)对所有n∈N*都成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学欲制定一项新的制度,学生会为此进行了问卷调查,所有参与问卷调查的人中,持有“支持”、“不支持”和“既不支持也不反对”的人数如下表所示:
支持既不支持也不反对不支持
高一学生800450200
高二学生100150300
(Ⅰ)在所有参与问卷调查的人中,用分层抽样的方法抽取n个人,已知从“支持”的人中抽取了45人,求n的值;
(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有1人是高一学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3x
 
 
x≥0
x2
 
 
x<0
,若f(x)≤9,则x的取值范围为(  )
A、(-∞,2]
B、[-2,3]
C、[-3,2]
D、[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e|x|+|x|,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2cos2x-cos(2x-
π
3
)

(Ⅰ)当x∈[0,
π
2
]
时,求f(x)的值域;
(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(B+C)=
3
2
,a=2,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案