精英家教网 > 高中数学 > 题目详情
如图所示,在边长为5+的长方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.
解:设圆锥的母线长为l,底面半径为r,高为h,
由已知条件
解得r=,l=4,S全面积=πrl+πr2=10π,h=,V=πr2h=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知一四棱锥P-ABCD的底面是边长为1的正方形,且侧棱PC⊥底面ABCD,且PC=2,E是侧棱PC上的动点
(1)求四棱锥P-ABCD的体积;
(2)证明:BD⊥AE。
(3)求二面角P-BD-C的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形PCBM是直角梯形,.又,直线与直线所成的角为60°.
(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正方形的边长为,点分别在边上,,现将△沿线段折起到△位置,使得

(1)求五棱锥的体积;
(2)在线段上是否存在一点,使得平面?若存在,求;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是一个空间几何体的三视图,如果主视图和左视图都是边长为2的正三角形,俯视图为正方形,那么该几何体的体积为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为的正方体内切一球,该球的表面积为(    )
A.B.2C.3D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱柱的底面边长为,侧棱长为中点,则三棱锥的体积为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为          .

查看答案和解析>>

同步练习册答案