精英家教网 > 高中数学 > 题目详情

函数f(x)=数学公式
①f(x)在(-∞,π)内连续,则a=________
②若①成立,则集合{x|f(f(x))=0}元素的个数有________.

0    5
分析:①根据f(x)在(-∞,π)内连续建立等式关系,解之即可求出a;
②根据分段函数f(x)解析式,我们结合集合元素要满足的性质f(f (x))=0,易通过分类讨论求了所有满足条件的x的值,进而确定集合中元素的个数.
解答:①∵f(x)在(-∞,π)内连续,
∴f(0)=a=4sin0
即a=0
故答案为:0

当x≤0时,f(x)=0可得x=0
当0<x≤π时,若f(x)=4sinx=0,则sinx=0,则x=π
当x≤0时,若f(x)=x2=π,则x=-
当0<x≤π时,若f(x)=4sinx=π,则sinx=
,则x=
又∵f[f (x)]=0
∴f (x)=0,或f (x)=π
∴x=-,或x=0,或x=,或 ,或x=π
故答案为:5
点评:本题主要考查了函数的连续性,以及集合中元素的个数及分段函数的函数值,其中根据分段函数的解析式,利用分类讨论的思想构造关于x的方程是解答本题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面对命题“函数f(x)=x+
1
x
是奇函数”的证明不是综合法的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案