精英家教网 > 高中数学 > 题目详情
已知菱形ABCD的边长为4,∠ABC=150°,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率(  )
A、
π
4
B、1-
π
4
C、
π
8
D、1-
π
8
考点:几何概型
专题:概率与统计
分析:以菱形ABCD的各个顶点为圆心、半径为1作圆如图所示,可得当该点位于图中阴影部分区域时,它到四个顶点的距离均不小于1.因此算出菱形ABCD的面积和阴影部分区域的面积,利用几何概型计算公式加以计算,即可得到所求的概率.
解答: 解:分别以菱形ABCD的各个顶点为圆心,作半径为1的圆,如图所示.
在菱形ABCD内任取一点P,则点P位于四个圆的外部或在圆上时,
满足点P到四个顶点的距离均不小于1,即图中的阴影部分区域
∵S菱形ABCD=AB•BCsin30°=4×4×
1
2
=8,
∴S阴影=S菱形ABCD-S空白=8-π×12=8-π.
因此,该点到四个顶点的距离均不小于1的概率P=
S阴影
S菱形ABCD
=
8-π
8
=1-
π
8

故选:D
点评:本题给出菱形ABCD,求在菱形内部取点,使该点到各个顶点的距离均不小于1的概率.着重考查了菱形的面积公式、圆的面积公式和几何概型计算公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记max{a,b}为a和b两数中的较大数.设函数f(x)和g(x)的定义域都是R,则“f(x)和g(x)都是偶函数”是“函数F(x)=max{f(x),g(x)}为偶函数”的
 
条件.(在“充分不必要”“必要不充分”“充分必要”和“既不充分也不必要”中选填一个)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰直角三角形ABC中,在斜边AB上找一点M,则AM<AC的概率为(  )
A、
2
2
B、
3
4
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题中,正确的是(  )
A、△ABC为直角三角形的充要条件是
AB
AC
=0
B、若
OP
=
1
2
OA
+
1
3
OB
,则P、A、B三点共线
C、若{
a
b
c
}
为空间的一个基底,则{
a
+
b
b
+
c
c
+
a
}
也构成空间的一个基底
D、|(
a
b
)•
c
|=|
a
|•|
b
|•|
c
|

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-2,3]上任取一个数a,则函数f(x)=x2-2ax+a+2有零点的概率为(  )
A、
1
3
B、
1
2
C、
3
5
D、
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,M是矩形ABCD的边CD上的一点,AC与BM相交于点N,BN=
2
3
BM.
(1)求证:M是CD的中点;
(2)若AB=2,BC=1,H是BM上异于B的一动点,求
AH
HB
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+lnx(a∈R)
(Ⅰ)当a=2时,求f(x)在区间[e,e2]上的最大值和最小值;
(Ⅱ)如果函数g(x),f1(x),f2(x)在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),f2(x)的“伴随函数”.已知函数f1(x)=(a-
1
2
)x2+2ax+(1-a2)lnx
f2(x)=
1
2
x2+2ax
.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“伴随函数”,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,其左焦点到点P(2,1)的距离为
10

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2ωx-sin2ωx+2
3
cosωxsinωx(ω>0),f(x)的两条相邻对称轴间的距离大于等于
π
2

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,角A,B,C所对的边依次为a,b,c,a=
3
,b+c=3,f(A)=1,当ω=1时,求△ABC的面积.

查看答案和解析>>

同步练习册答案