精英家教网 > 高中数学 > 题目详情
14.公安部新修订的《机动车登记规定》正式实施后,小型汽车的号牌已经可以采用“自主编排”的方式进行编排,某人欲选由A,B,C,D,E中的两个字母,和1,2,3,4,5中的三个不同数字(三个数字都相邻)组成一个号牌,则他选择号牌的方法种数为3600.

分析 先选字母,有C52种方法,再选3个数字,有C53种方法,把三个数字看做一个整体进行排列有A33种方法,再把3个数字做成的一个整体和2个字母进行全排列,有A33种方法,再根据分步计数原理运算求得结果.

解答 解:先选字母,有C52=10种方法,再选3个数字,有C53=10种方法,
把三个数字看做一个整体进行排列有A33=6种方法,
再把3个数字做成的一个整体和2个字母进行全排列,有A33=6种方法,
再根据分步计数原理求得他选择号牌的方法种数最多有 10×120×6×6=3600种,
故答案为:3600.

点评 本题主要考查排列与组合及两个基本原理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.执行如图的程序框图,如果输入的n是3,那么输出的p是(  )
A.$\frac{1}{2}$B.$\frac{1}{6}$C.$\frac{1}{24}$D.$\frac{1}{120}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各组函数是同一函数的是(  )
A.y=$\frac{2x}{x}$与y=2B.y=$\sqrt{{x}^{2}}$与y=($\sqrt{x}$)2C.y=lgx2与y=2lgxD.y=$\frac{{x}^{2}}{x}$与y=x(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一个顶点为B(0,b),右焦点为F,直线BF与椭圆的另一个交点为M,且|$\overrightarrow{BF}$|=2|$\overrightarrow{FM}$|,则该椭圆离心率为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一个四棱锥的正视图,侧视图(单位:cm)如图所示,
(1)请画出该几何体的俯视图;
(2)求该几何体的体积;
(3)求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:=$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率等于$\frac{\sqrt{3}}{2}$,椭圆C上的点到焦点的距离的最大值为4+2$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左右顶点分别为A,B,过点P(-2,0)的动直线(x轴除外)与椭圆C相交于M,N两点,求证:AM与BN的交点Q总在定直线l:x=-8上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某大型商场成立十周年之际,为了回馈顾客,特进行有奖销售:有奖销售期间,每购买满100元该商场的商品,都有一次抽奖机会,一旦中奖,将获得一个精美奖品;抽奖方案有A、B两种,可自主选择,A方案是:从装有3个红色小球和7个白色小球的箱子里每次摸1个小球,不放回地摸3次,若至少摸到两个红球就中奖,否则无奖;B方案是:从装有3个红色小球和7个白色小球的箱子里每次摸1个小球,有放回地摸3次,若至少有两次摸到红球就中奖,否则无奖;其中箱子里的小球除颜色和编号外完全相同.
(Ⅰ)若某顾客用A方案抽奖一次,求他抽到的3个小球中红球个数X的分布列和期望;
(Ⅱ)若甲、乙两顾客分别用A、B方案各抽奖一次,它们中奖的概率是否相同?若你去抽奖,将选择哪种方案?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在极坐标系中,已知曲线C1与C2的极坐标方程分别为ρ=2sinθ与ρcosθ=-1(0≤θ<2π).求:
(1)两曲线(含直线)的公共点P的极坐标;
(2)过点P被曲线C1截得弦长为$\sqrt{2}$的直线极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知ABC-A1B1C1为直三棱柱,AB⊥BC,AA1=AB=BC,连接AB1交A1B于点E,
(1)求证:AE⊥A1C
(2)若A1A=2,求E到平面A1AC的距离.

查看答案和解析>>

同步练习册答案