精英家教网 > 高中数学 > 题目详情
19.已知椭圆C:=$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率等于$\frac{\sqrt{3}}{2}$,椭圆C上的点到焦点的距离的最大值为4+2$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左右顶点分别为A,B,过点P(-2,0)的动直线(x轴除外)与椭圆C相交于M,N两点,求证:AM与BN的交点Q总在定直线l:x=-8上.

分析 (Ⅰ)运用离心率公式和最大值a+c,解方程即可得到a,c,求出b,进而得到椭圆方程;
(Ⅱ)求出A,B坐标,考虑MN斜率不存在,可得M,N坐标,求出直线AN,BN方程,求出交点,猜想:存在l:x=-8,再由分析法证明,设MN的方程是y=k(x+2),代入椭圆C的方程,运用韦达定理,即可得到存在定直线l:x=-8,使得AM与BN的交点Q总在直线l上.

解答 解:(Ⅰ)由$e=\frac{{\sqrt{3}}}{2}⇒\frac{c}{a}=\frac{{\sqrt{3}}}{2}$,
又椭圆C上的点到焦点的距离的最大值$a+c=4+2\sqrt{3}$.
∴a=4,c=2$\sqrt{3}$,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{16-12}$=2,
所以椭圆C方程是:$\frac{x^2}{16}+\frac{y^2}{4}=1$;
(Ⅱ)证明:A(-4,0).B(4,0),
当MN斜率不存在时,MN:x=-2,$M(-2,\sqrt{3}),N(-2,-\sqrt{3})$,
则AN的方程是:y=$\frac{\sqrt{3}}{2}$(x+4),
BN的方程是:y=$\frac{\sqrt{3}}{6}$(x-4),
交点的坐标是:$(-8,-2\sqrt{3})$,猜想:存在l:x=-8,
即直线l的方程是:x=-8使得AM与BN的交点Q总在直线l上.
当MN斜率存在时,设MN的方程是y=k(x+2),代入椭圆C的方程得:
(1+4k2)x2+16k2x+16k2-16=0,
设M(x1,y1),N(x2,y2),Q(-8,y0
∴${x_1}+{x_2}=\frac{{-16{k^2}}}{{1+4{k^2}}},{x_1}{x_2}=\frac{{16{k^2}-16}}{{1+4{k^2}}}$,
∵$\overrightarrow{AQ}=(-4,{y_0})$,$\overrightarrow{AM}$=(x1+4,y1),A,M,Q共线,
∴-4y1=y0(x1+4),
由x1+4≠0,可得y0=-$\frac{4{y}_{1}}{{x}_{1}+4}$,
又$\overrightarrow{BQ}=(-12,{y_0})$,$\overrightarrow{BN}=({x_2}-4,{y_2})$,
要证B,N,Q共线,即证$-12{y_2}=({x_2}-4)\frac{{-4{y_1}}}{{{x_1}+4}}$,
即证:3k(x2+2)(x1+4)=k(x1+2)(x2-4),
即证:x1x2+5(x1+x2)+16=0
因为:${x_1}{x_2}+5({x_1}+{x_2})+16=\frac{{16{k^2}-16}}{{1+4{k^2}}}-\frac{{80{k^2}}}{{1+4{k^2}}}+16=0$成立,
所以点Q在直线BN上.
综上:AM与BN的交点Q总在定直线l:x=-8上.

点评 本题考查椭圆方程求法,注意运用离心率公式和椭圆上点与焦点的最大值a+c,考查定直线问题的证明,注意运用猜想和分析法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=log2x,g(x)=$\left\{\begin{array}{l}{f(x),x≥2}\\{f(4-x),x<2}\end{array}\right.$若关于x的方程g(x)=k有两个不相等的实数根,则实数k的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.偶函数f(x)在[0,+∞)上单调递增,若f(1)=0,则不等式f(x)>0的解集是(  )
A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)∪(0,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.从四面体ABCD的6条棱的中点及其四个顶点共10个点中任取4个点,则这四个点不共面的概率是(  )
A.$\frac{5}{7}$B.$\frac{7}{10}$C.$\frac{24}{35}$D.$\frac{47}{70}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.公安部新修订的《机动车登记规定》正式实施后,小型汽车的号牌已经可以采用“自主编排”的方式进行编排,某人欲选由A,B,C,D,E中的两个字母,和1,2,3,4,5中的三个不同数字(三个数字都相邻)组成一个号牌,则他选择号牌的方法种数为3600.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.歌德巴赫(Goldbach.C.德.1690-1764)曾研究过“所有形如$\frac{1}{{{{(n+1)}^{m+1}}}}$(m,n为正整数)的分数之和”问题.为了便于表述,引入记号:$\sum_{n=1}^∞{\sum_{m=1}^∞{\frac{1}{{{{(n+1)}^{m+1}}}}}}$=$(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+…)+(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+…)+…+(\frac{1}{{{{(n+1)}^2}}}+\frac{1}{{{{(n+1)}^3}}}+\frac{1}{{{{(n+1)}^4}}}+…)+…$
写出你对此问题的研究结论:$\sum_{n=1}^∞{\sum_{m=1}^∞{\frac{1}{{{{(n+1)}^{m+1}}}}=1}}$(用数学符号表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在如图所示的多面体中,底面BCFE是梯形,EF∥BC,EF⊥EB,又平面ABE⊥平面BCFE,AD∥EF,BC=2AD=4,EF=3,AE=BE=2,AB=2$\sqrt{2}$.
(1)在BC上是否存在点G,使BD⊥EG,若存在,试确定G的位置;若不存在,请说明理由;
(2)求二面角C-DF-E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在如图所示的几何体中,四边形ABCD是正方形,EA⊥底面ABCD,EF∥AD,且AB=6,AE=3$\sqrt{2}$,EF=3.
(Ⅰ)求证:DE⊥平面ABF;
(Ⅱ)求二面角A-FD-B与二面角A-BF-D的正切值之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.把数列$\left\{{\frac{1}{{{n^2}+n}}}\right\}$依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,…,按此规律下去,即$({\frac{1}{2}}),({\frac{1}{6},\frac{1}{12}}),({\frac{1}{20},\frac{1}{30},\frac{1}{42}})$,…,则第6个括号内各数字之和为$\frac{3}{176}$.

查看答案和解析>>

同步练习册答案