精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=log2x,g(x)=$\left\{\begin{array}{l}{f(x),x≥2}\\{f(4-x),x<2}\end{array}\right.$若关于x的方程g(x)=k有两个不相等的实数根,则实数k的取值范围是(1,+∞).

分析 求出g(x)的解析式,由题意可得函数y=g(x)和y=k图象由两个交点,画出函数y=g(x)的图象和直线y=k,通过图象即可得到所求范围.

解答 解:函数f(x)=log2x,
g(x)=$\left\{\begin{array}{l}{f(x),x≥2}\\{f(4-x),x<2}\end{array}\right.$即g(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x≥2}\\{lo{g}_{2}(4-x),x<2}\end{array}\right.$,
关于x的方程g(x)=k有两个不相等的实数根,
即函数y=g(x)和y=k图象由两个交点,
画出函数y=g(x)的图象和直线y=k,
由图象可得,实数k的取值范围为(1,+∞).
故答案为:(1,+∞).

点评 本题考查函数方程的转化思想的运用,考查数形结合的思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图,曲线Γ在顶点为O的角α的内部,A、B是曲线Γ上任意相异两点,且α≥∠AOB,我们把满足条件的最小角叫做曲线Γ相对于点O的“确界角”.已知O为坐标原点,曲线C的方程为y=$\left\{\begin{array}{l}{\sqrt{4+\frac{{x}^{2}}{3}}(x≤0)}\\{2{x}^{2}-3x+2(x>0)}\end{array}\right.$,那么它相对于点O的“确界角”等于(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.圆x2+(y-m)2=5与双曲线x2-$\frac{{y}^{2}}{4}$=1的渐近线相切,则正实数m=(  )
A.5B.1C.5$\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若存在实数x使|x-a|+|x|≤4成立,则实数a的取值范围是[-4,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图的程序框图,如果输入的n是3,那么输出的p是(  )
A.$\frac{1}{2}$B.$\frac{1}{6}$C.$\frac{1}{24}$D.$\frac{1}{120}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体三视图如图所示,则该几何体的最短的棱长度是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)=(x+10)6,求fm(2)、f(6)(2)、及f(20)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$cos(\frac{π}{2}+φ)=\frac{3}{5}$,且$|φ|<\frac{π}{2}$,则tanφ为(  )
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:=$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率等于$\frac{\sqrt{3}}{2}$,椭圆C上的点到焦点的距离的最大值为4+2$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左右顶点分别为A,B,过点P(-2,0)的动直线(x轴除外)与椭圆C相交于M,N两点,求证:AM与BN的交点Q总在定直线l:x=-8上.

查看答案和解析>>

同步练习册答案