精英家教网 > 高中数学 > 题目详情
3.某几何体三视图如图所示,则该几何体的最短的棱长度是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 由三视图可知该几何体是四棱锥,画出它的直观图,求出各棱长,可得答案.

解答 解:由三视图可知该几何体是四棱锥,其直观图如下图所示:

利用勾股定理可得:VA=$\sqrt{2}$,
AB=CD=2,
VD=$\sqrt{5}$,
VC=AD=BC=3,
VB=$\sqrt{6}$
故选:B.

点评 本题考查的知识点是由棱锥的几何特征,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的三视图如图所示,则此几何体的体积为(  )
A.$\frac{22}{3}$B.$\frac{20}{3}$C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足不等式组$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+2y≤6\\ 3x+y≤12\end{array}\right.$,且x,y∈Z,则z=2x+y的最大值是(  )
A.7B.8C.$\frac{42}{5}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a,b∈N,则$\frac{1}{a}$+$\frac{1}{b}$>1成立的充要条件是(  )
A.a,b都不大于2B.a,b中至少有一个等于1
C.a,b都大于2D.a,b中至多有一个等于1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=log2x,g(x)=$\left\{\begin{array}{l}{f(x),x≥2}\\{f(4-x),x<2}\end{array}\right.$若关于x的方程g(x)=k有两个不相等的实数根,则实数k的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x>0,当x=4时,x+$\frac{16}{x}$有最小值,最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=9-x2(  )
A.有最大值-9B.有最小值9C.有最大值9D.有最小值-9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若M∪{1}={1,2,3},则M集合可以是(  )
A.{1,2,3}B.{1,3}C.{1,2}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.歌德巴赫(Goldbach.C.德.1690-1764)曾研究过“所有形如$\frac{1}{{{{(n+1)}^{m+1}}}}$(m,n为正整数)的分数之和”问题.为了便于表述,引入记号:$\sum_{n=1}^∞{\sum_{m=1}^∞{\frac{1}{{{{(n+1)}^{m+1}}}}}}$=$(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+…)+(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+…)+…+(\frac{1}{{{{(n+1)}^2}}}+\frac{1}{{{{(n+1)}^3}}}+\frac{1}{{{{(n+1)}^4}}}+…)+…$
写出你对此问题的研究结论:$\sum_{n=1}^∞{\sum_{m=1}^∞{\frac{1}{{{{(n+1)}^{m+1}}}}=1}}$(用数学符号表示).

查看答案和解析>>

同步练习册答案