精英家教网 > 高中数学 > 题目详情
8.如图,曲线Γ在顶点为O的角α的内部,A、B是曲线Γ上任意相异两点,且α≥∠AOB,我们把满足条件的最小角叫做曲线Γ相对于点O的“确界角”.已知O为坐标原点,曲线C的方程为y=$\left\{\begin{array}{l}{\sqrt{4+\frac{{x}^{2}}{3}}(x≤0)}\\{2{x}^{2}-3x+2(x>0)}\end{array}\right.$,那么它相对于点O的“确界角”等于(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

分析 作出函数的图象,利用数形结合思想能求出曲线相对于原点的“确界角”.

解答 解:作出函数的图象,如下图:

当x≤0时,曲线的渐近线是y=-$\frac{\sqrt{3}}{3}x$,与y轴正半轴的夹角是$\frac{π}{3}$,
当x>0时,设过原点的直线与曲线切于点A(${x}_{0},2{{x}_{0}}^{2}-3{x}_{0}+2$),
解得x0=1,即kOA=1,
切线与y轴正半轴的夹角是$\frac{π}{4}$,
则曲线相对于原点的“确界角”等于$\frac{π}{3}+\frac{π}{4}=\frac{7}{12}π$.
故选:D.

点评 本题考查曲线相对于原点的“确界角”的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知A${\;}_{n}^{3}$=C${\;}_{n}^{4}$,则n=27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=∠ADC=90°,∠BCD=60°,DC=BC=$\sqrt{3}$,AC和BD交于O点.
(1)求证:平面PBD⊥平面PAC;
(2)当点A在平面PBD内的射影G恰好是△PBD的重心时,求二面角B-PD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若圆C:x2+(y+1)2=4,点$A(-\sqrt{5},-1)$和点$B(3\sqrt{5},a)$,从点A观察点B,要使视线不被圆C挡住,则实数a的取值范围是a>8$\sqrt{5}$-1或a<-8$\sqrt{5}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x2-2ax+5(a>1),g(x)=log3x,若函数f(x)的定义域与值域都是[1,a],则对于任意的x1,x2∈[1,a+1]时,总有$|{f({x_1})-g({x_2})}|≤{t^2}+2t-1$恒成立,则t的取值范围为(  )
A.[1,3]B.[-1,3]C.[1,+∞)∪(-∞,-3]D.[3,+∞)∪(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的三视图如图所示,则此几何体的体积为(  )
A.$\frac{22}{3}$B.$\frac{20}{3}$C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆C:x2+y2+2x-3=0,直线l:x+ay+2-a=0(a∈R),则(  )
A.l与C相离B.l与C相切
C.l与C相交D.以上三个选项均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.观察下列等式:
a2-b2=(a-b)(a+b)
a3-b3=(a-b)(a2+ab+b2
a4-b4=(a-b)(a3+a2b+ab2+b3),…,
照此规律,an-bn=(a-b)(an-1+an-2b+…+abn-2+bn-1)(n≥2,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=log2x,g(x)=$\left\{\begin{array}{l}{f(x),x≥2}\\{f(4-x),x<2}\end{array}\right.$若关于x的方程g(x)=k有两个不相等的实数根,则实数k的取值范围是(1,+∞).

查看答案和解析>>

同步练习册答案