精英家教网 > 高中数学 > 题目详情
8.将x•$\sqrt{-\frac{1}{x}}$根号外的x移入根号内的结果为$-\sqrt{-x}$.

分析 由题意可得x<0,然后把根式外的x移到根式内部得答案.

解答 解:由原式有意义,可得x<0,
∴x•$\sqrt{-\frac{1}{x}}$=$-\sqrt{{x}^{2}•(-\frac{1}{x})}=-\sqrt{-x}$.
故答案为:$-\sqrt{-x}$.

点评 本题考查根式与分数指数幂的互化,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{mx}{lnx}$,曲线y=f(x)在点(e2,f(e2))处的切线与直线2x+y=0垂直(其中e为自然对数的底数).
(1)求f(x)的解析式及单调递减区间;
(2)是否存在常数k,使得对于定义域内的任意x,f(x)>$\frac{k}{lnx}$+2$\sqrt{x}$恒成立,若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a,b>0,a+b=5,则$\sqrt{a+1}$+$\sqrt{b+3}$的最大值为(  )
A.18B.9C.3$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.下列两个函数是否相同?为什么?
(1)f(x)=$\frac{x}{x}$与g(x)=1;
(2)f(x)=x与g(x)=$\sqrt{{x}^{2}}$;
(3)f(x)=$\frac{{x}^{4}-1}{{x}^{2}+1}$与g(x)=x2-1;
(4)y=sin2x+cos2x与y=1;
(5)f(x)=lgx2与g(x)=2lgx;
(6)f(x)=x$\root{3}{x-1}$与g(x)=$\root{3}{{x}^{4}-{x}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定理:若x∈(0,$\frac{π}{2}$),则sinx<x,设a,b,c∈(0,$\frac{π}{2}$),其中,a是函数y=x与y=cosx图象交点横坐标,b=sin(cosb),c=cos(sinc),则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={(x,y)|y=ax+2},B={(x,y)|y=|x+1|},且A∩B是一个单元集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.用随机模拟方法得到的频率(  )
A.大于概率B.小于概率C.等于概率D.是概率的近似值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.判断下列函数的奇偶性.
(1)f(x)=$\sqrt{9-{x}^{2}}$+$\sqrt{{x}^{2}-9}$;
(2)f(x)=(x+1)$\sqrt{\frac{1-x}{1+x}}$;
(3)f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$;
(4)f(x)=$\frac{lg(1-{x}^{2})}{|x-2|-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{2x-3}{x}$图象的对称中心为(0,2).

查看答案和解析>>

同步练习册答案