精英家教网 > 高中数学 > 题目详情
13.已知集合A={(x,y)|y=ax+2},B={(x,y)|y=|x+1|},且A∩B是一个单元集,求实数a的取值范围.

分析 A∩B是一个单元集,得出直线y=ax+2与y=|x+1|的图象有且只有一个交点,即可求出实数a的取值范围.

解答 解:∵A∩B是一个单元集,
∴直线y=ax+2与y=|x+1|的图象有且只有一个交点.
∴实数a的取值范围是a≤-l或a≥1.

点评 本题考查集合的运算,考查学生的计算能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设F1,F2是椭圆C的左右焦点,若椭圆C的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的解析式:
(1)已知f(x)是一次函数,并且f[f(x)]=4x+3,求f(x);
(2)已知f(2x+1)=4x2+8x+3,求f(x);
(3)已知f(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$-3,求f(x);
(4)已知f(x)-2f($\frac{1}{x}$)=3x+2,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设a,b∈R,且对一切x≤0,不等式(ax+2)(x2+2b)≤0恒成立,则a2-b的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将x•$\sqrt{-\frac{1}{x}}$根号外的x移入根号内的结果为$-\sqrt{-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a2-a+2∈{0,2,4,2-a},则实数a=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|y=$\sqrt{{x}^{2}-4}$},B={x|ax-2>0},若A∪B=A,求实数a的值所组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l经过点P(1,1),且与以A(2,-3),B(-3,-2)为端点的线段AB相交,求此直线的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-y+1≥0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为6.
(1)求实数a,b应满足的关系式;
(2)当a,b为何值时,t=$\frac{{a}^{2}}{2}$+$\frac{{b}^{2}}{3}$取得最小值,并求出此最小值.

查看答案和解析>>

同步练习册答案