精英家教网 > 高中数学 > 题目详情
3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设F1,F2是椭圆C的左右焦点,若椭圆C的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形的面积最大值.

分析 (1)由椭圆的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为$\sqrt{3}$,列出方程组,求出a,b,由此能求出椭圆C的方程.
(2)设过椭圆右焦点F2的直线l:x=ty+1与椭圆交于A,B两点,由$\left\{\begin{array}{l}{x=ty+1}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,得:(3t2+4)y2+6ty-9=0,由此利用韦达定理、弦长公式、平行四边形面积、函数单调性,能求出平行四边形面积的最大值.

解答 20.(本小题满分12分)
解:(1)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为$\sqrt{3}$,
∴依题意$\left\{\begin{array}{l}{{a}^{2}={b}^{2}+{c}^{2}}\\{a:b:c=2:\sqrt{3}:1}\\{bc=\sqrt{3}}\end{array}\right.$,解得a=2,b=$\sqrt{3}$,c=1,
∴椭圆C的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.…(5分)
(2)设过椭圆右焦点F2的直线l:x=ty+1与椭圆交于A,B两点,
则$\left\{\begin{array}{l}{x=ty+1}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,整理,得:(3t2+4)y2+6ty-9=0,
由韦达定理,得:${y}_{1}+{y}_{2}=\frac{-6t}{3{t}^{2}+4}$,${y}_{1}{y}_{2}=\frac{-9}{3{t}^{2}+4}$,
∴|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{\sqrt{144{t}^{2}+144}}{3{t}^{2}+4}$=$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$,
∴${S}_{△OAB}={S}_{△O{F}_{1}A}+{S}_{△O{F}_{1}B}$=$\frac{1}{2}×|OF|×|{y}_{1}-{y}_{2}|$=$\frac{6\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$,
椭圆C的内接平行四边形面积为S=4S△OAB=$\frac{24\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$,
令m=$\sqrt{1+{t}^{2}}$≥1,则S=f(m)=$\frac{24m}{3{m}^{2}+1}$=$\frac{24}{3m+\frac{1}{m}}$,
注意到S=f(m)在[1,+∞)上单调递减,∴Smax=f(1)=6,
当且仅当m=1,即t=0时等号成立.故这个平行四边形面积的最大值为6.…(12分)

点评 本题考查椭圆方程的求法,考查平行四边形的面积的最大值的求法,是中档题,解题时要认真审题,注意椭圆性质、韦达定理、弦长公式、平行四边形面积、函数单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\frac{3-2x}{x+1}$(x∈[0,1])的值域为(  )
A.(-∞,3]B.(-2,$\frac{1}{2}$]C.[$\frac{1}{2}$,3]D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.正三棱锥P-ABC,E、F分别为PA、AB的中点,G在BC上,且$\frac{BG}{GC}$=2,过E、F、G三点作正三棱锥P-ABC的截面EFGH,则H的位置位于PC(  )
A.$\frac{PH}{HC}=\frac{1}{2}$B.PH=HCC.$\frac{PH}{HC}=2$D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=x2(x-2)2-a|x-1|+a有4个零点,则a的取值范围为{-$\frac{32}{27}$}∪(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{mx}{lnx}$,曲线y=f(x)在点(e2,f(e2))处的切线与直线2x+y=0垂直(其中e为自然对数的底数).
(1)求f(x)的解析式及单调递减区间;
(2)是否存在常数k,使得对于定义域内的任意x,f(x)>$\frac{k}{lnx}$+2$\sqrt{x}$恒成立,若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一书架有五层,从下到上依次称为第1层,第2层,…,第5层,今把15册图书分放到书架的各层上,有些层上可以不放,证明:无论怎样放法,书架每层上的图书册数,以及相邻两层上的图书册数之和,这些数中至少有两个是相等的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某资料室在计算机使用中,如表所示,编码以一定规则排列,且从左至右以及从上到下都是无限的,记第i行、第j列的编码为ai,j(i,j∈N*)求:
(Ⅰ)第2行第n列的编码a2,n
(Ⅱ)此表中,第m行第n列的编码am,n
111111
123456
1357911
147101316
159131721
1611162126

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,OM∥AB,点P在由射线OM,线段OB及AB的延长线围成的阴影区域内(不含边界),且$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,给出以下结论:
①x的取值范围是(-∞,0);
②y的取值范围是(0,$\frac{1}{2}$);
③在阴影区域内一定存在点P,使得x+y=1;
④若x=-$\frac{1}{2}$,则$\frac{1}{2}$<y<$\frac{3}{2}$.
其中正确结论的序号是①④.(填上你认为所有正确的结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={(x,y)|y=ax+2},B={(x,y)|y=|x+1|},且A∩B是一个单元集,求实数a的取值范围.

查看答案和解析>>

同步练习册答案