精英家教网 > 高中数学 > 题目详情

 (本小题满分10分)记函数的定义域为4,
 的定义域为B
(I)求集合A
(II)若,求实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)(1)计算的值.
(2)计算的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若定义在上的函数满足条件:存在实数,使得:
⑴ 任取,有是常数);
⑵ 对于内任意,当,总有
我们将满足上述两条件的函数称为“平顶型”函数,称为“平顶高度”,称为“平顶宽度”。根据上述定义,解决下列问题:
(1)函数是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由。
(2) 已知是“平顶型”函数,求出 的值。
(3)对于(2)中的函数,若上有两个不相等的根,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数.
(I)当时,若方程有一根大于1,一根小于1,求的取值范围;
(II)当时,在时取得最大值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数),
(1)求函数的最小值;
(2)已知,命题p:关于x的不等式对任意恒成立;命题q:不等式 对任意恒成立.若“pq”为真,“pq”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数对一切实数x,y都有成立,且.
(1)求的值
(2)求的解析式
(3)若,对任意的,总存在,使得成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,并满足(1)对于一切实数,都有
(2)对任意的;  (3)
利用以上信息求解下列问题:
(1)求
(2)证明
(3)若对任意的恒成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案