精英家教网 > 高中数学 > 题目详情

设0≤x≤2,求函数y=的最大值和最小值.

 

【答案】

①当a≤1时,ymin=

②当1<a≤时,ymin=1,ymax=

③当<a<4 时 ymin=1,ymax=

④当a≥4时,ymin=

【解析】本题中的函数是一个复合函数,求解此类函数在区间上的最值,一般用换元法,把复合函数的最值问题变为两个函数的最值问题,以达到简化解题的目的.本题宜先令2x=t,求出其范围,再求外层函数在这个区间上的最值

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设0≤x≤2,求函数y=4x-
1
2
-a•2x+
a2
2
+1
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设0≤x≤2,求函数y=4x-
12
-2x+1+5的最大值和最小值,并指出相应x的取值?

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知奇函数f(x)在定义域[-2,2]内递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围;
(2)设0≤x≤2,求函数y=4x-3•2x+5的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设0≤x≤2,求函数y=4x-
12
-2x-1+5
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设0≤x≤2,求函数y=4x-
12
-2x+1+4
的最大值和最小值.

查看答案和解析>>

同步练习册答案