精英家教网 > 高中数学 > 题目详情
17.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F1,离心率为$\frac{\sqrt{2}}{2}$,过点F1且与x轴垂直的直线被椭圆截得的线段长为$\sqrt{2}$.
(1)求椭圆C的方程;
(2)若y2=4x上存在两点M,N,椭圆C上存在两个点P,Q,满足:P,Q,F1三点共线,M,N,F1三点共线且PQ⊥MN,求四边形PMQN的面积的最小值.

分析 (1)由题意可知:a=$\sqrt{2}$b2,a=$\sqrt{2}$c及a2=b2-c2,即可求得a和b的值,求得椭圆的标准方程;
(2)讨论直线MN的斜率不存在,求得弦长,求得四边形的面积;当直线MN斜率存在时,设直线方程为:y=k(x-1)(k≠0)联立抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可得到最小值.

解答 解:(1)由点F1且与x轴垂直的直线被椭圆截得的线段长为$\sqrt{2}$,则$\frac{2{b}^{2}}{a}$=$\sqrt{2}$,a=$\sqrt{2}$b2,①
椭圆的离心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,则a=$\sqrt{2}$c,②
由a2=b2-c2,③
解得:a=$\sqrt{2}$,b=1,c=1,
则椭圆标准方程$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)当直线MN的斜率不存在时,直线PQ的斜率为0,则丨MN丨=4,丨PQ丨=2$\sqrt{2}$,
四边形PMQN的面积S=4$\sqrt{2}$,
当直线MN的斜率存在时,直线MN的方程为y=k(x-1),(k≠0),
当直线MN斜率存在时,设直线方程为:y=k(x-1)(k≠0)
$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,联立得k2x2-(2k2+4)x+k2=0,
令M(x1,y1),N(x2,y2),则x1+x2=$\frac{4}{{k}^{2}}$+2,x1x2=1,
|MN|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{(\frac{4}{{k}^{2}}+2)^{2}-4×1}$=$\frac{4}{{k}^{2}}$+2,
∵PQ⊥MN,∴直线PQ的方程为:y=-$\frac{1}{k}$(x-1),
$\left\{\begin{array}{l}{y=-\frac{1}{k}(x-1)}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得:(k2+2)x2-4x+2-2k2=0,
令P(x3,y3),Q(x4,y4),x3+x4=$\frac{4}{2+{k}^{2}}$,x3x4=$\frac{2-2{k}^{2}}{2+{k}^{2}}$,
由弦长公式|PQ|=$\sqrt{1+\frac{1}{{k}^{2}}}$•$\sqrt{({x}_{3}+{x}_{4})^{2}-4{x}_{3}{x}_{4}}$=$\frac{2\sqrt{2}(1+{k}^{2})}{2+{k}^{2}}$,
∴四边形PMQN的面积S=$\frac{1}{2}$|MN|•|PQ|=$\frac{4\sqrt{2}(1+{k}^{2})^{2}}{{k}^{2}({k}^{2}+2)}$,
令1+k2=t,(t>1),
则S=$\frac{4\sqrt{2}{t}^{2}}{(t-1)(t+1)}$=$\frac{4\sqrt{2}{t}^{2}}{{t}^{2}-1}$=4$\sqrt{2}$×(1+$\frac{1}{{t}^{2}-1}$)>4$\sqrt{2}$,
∴S>4$\sqrt{2}$,
综上可知:四边形PMQN的面积的最小值4$\sqrt{2}$.

点评 本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,同时考查直线和椭圆联立,运用韦达定理和弦长公式,以及四边形的面积的最小值的求法,考查运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列函数既是奇函数,又在区间[-1,1]上单调递减的是(  )
A.f(x)=sinxB.f(x)=|x+1|C.f(x)=-xD.f(x)=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若函数y=Asin(ωx+$\frac{π}{6}$)(A>0,ω>0),两相邻点最高点与最低点的距离为$\sqrt{\frac{{π}^{2}}{4}+16}$,两相邻最高点的横坐标相差π,求这个函数的振幅、周期、对称轴、对称中心及单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(x)=2sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,已知点R的极坐标为(2$\sqrt{2}$,$\frac{π}{4}$),曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)求点R的直角坐标,化曲线C的参数方程为普通方程;
(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值,及此时P点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知随机变量ξ的分布列为下表所示,若$Eξ=\frac{1}{4}$,则Dξ=(  )
ξ-101
P$\frac{1}{3}$ab
A.$\frac{5}{6}$B.$\frac{41}{48}$C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.阅读如图所示的程序框图,运行相应的程序,输出的结果是a=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{x}{{{e^{x.}}}}$-mx(m∈R).
(Ⅰ)当m=0时,讨论函数f(x)的单调性;
(Ⅱ)当b>a>0时,总有$\frac{f(b)-f(a)}{b-a}$>1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.秦九韶是我国南宋时期的数学家,他在《数学九章》中提出的多项式的秦九韶算法,至今仍是比较先进的算法,如图是事项该算法的程序框图,执行该程序框图,若输入n,x的值分别为4,2,则输出v的值为(  )
A.5B.12C.25D.50

查看答案和解析>>

同步练习册答案