精英家教网 > 高中数学 > 题目详情
12.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,已知点R的极坐标为(2$\sqrt{2}$,$\frac{π}{4}$),曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)求点R的直角坐标,化曲线C的参数方程为普通方程;
(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值,及此时P点的直角坐标.

分析 (1)由极坐标转化为直角坐标,消去参数可得普通方程即可;
(2)由参数方程,设出P的坐标,得到矩形的周长,根据三角函数的图象和性质即可求出最值.

解答 解:(1)点R的极坐标为(2$\sqrt{2}$,$\frac{π}{4}$),直角坐标为(2,2);
曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),普通方程为$\frac{{x}^{2}}{3}+{y}^{2}$=1;
(2)设P($\sqrt{3}$cosθ,sinθ),则Q(2,sinθ),|PQ|=2-$\sqrt{3}$cosθ,|QR|=2-sinθ,
∴矩形周长=2(2-$\sqrt{3}$cosθ+2-sinθ)=8-4sin(θ+$\frac{π}{3}$),
∴当θ=$\frac{π}{6}$时,周长的最小值为4,此时,点P的坐标为($\frac{3}{2}$,$\frac{1}{2}$).

点评 本题考查点的极坐标和直角坐标的互化,以及利用平面几何知识解决最值问题.利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=(x2+ax-a)•e-x(a∈R).
(Ⅰ)当a=0时,求曲线y=f(x)在点(-1,f(-1))处的切线方程;
(Ⅱ)设g(x)=x2-x-1,若对任意的t∈[0,2],存在s∈[0,2]使得f(s)≥g(t)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥2}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若x2+y2+2x≥k恒成立,则实数k的最大值为(  )
A.40B.9C.8D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在等比数列{an}中,a1=2,公比q=2,若am=a1a2a3a4(m∈N*),则m=(  )
A.11B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在梯形ABCD中,AD∥BC,$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=4,AC与BD相交于点E,$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,则$\overrightarrow{AE}$•$\overrightarrow{CD}$=-$\frac{16}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F1,离心率为$\frac{\sqrt{2}}{2}$,过点F1且与x轴垂直的直线被椭圆截得的线段长为$\sqrt{2}$.
(1)求椭圆C的方程;
(2)若y2=4x上存在两点M,N,椭圆C上存在两个点P,Q,满足:P,Q,F1三点共线,M,N,F1三点共线且PQ⊥MN,求四边形PMQN的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x,y∈R,(  )
A.若|x-y2|+|x2+y|≤1,则${(x+\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$
B.若|x-y2|+|x2-y|≤1,则${(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$
C.若|x+y2|+|x2-y|≤1,则${(x+\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$
D.若|x+y2|+|x2+y|≤1,则${(x-\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设x,y满足约束条件$\left\{\begin{array}{l}{4x-y-2≤0}\\{x-y+1≥0}\\{x≥0}\\{y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)最大值为1,则$\frac{2}{a}+\frac{1}{b}$的最小值8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(Ⅰ)已知函数f(x)=|x+1|+|x-a|(a>0),若不等式f(x)≥5的解集为{x|x≤-2或x≥3},求a的值;
(Ⅱ) 已知实数a,b,c∈R+,且a+b+c=m,求证:$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$≥$\frac{9}{2m}$.

查看答案和解析>>

同步练习册答案