分析 (1)由极坐标转化为直角坐标,消去参数可得普通方程即可;
(2)由参数方程,设出P的坐标,得到矩形的周长,根据三角函数的图象和性质即可求出最值.
解答 解:(1)点R的极坐标为(2$\sqrt{2}$,$\frac{π}{4}$),直角坐标为(2,2);
曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),普通方程为$\frac{{x}^{2}}{3}+{y}^{2}$=1;
(2)设P($\sqrt{3}$cosθ,sinθ),则Q(2,sinθ),|PQ|=2-$\sqrt{3}$cosθ,|QR|=2-sinθ,
∴矩形周长=2(2-$\sqrt{3}$cosθ+2-sinθ)=8-4sin(θ+$\frac{π}{3}$),
∴当θ=$\frac{π}{6}$时,周长的最小值为4,此时,点P的坐标为($\frac{3}{2}$,$\frac{1}{2}$).
点评 本题考查点的极坐标和直角坐标的互化,以及利用平面几何知识解决最值问题.利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 40 | B. | 9 | C. | 8 | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若|x-y2|+|x2+y|≤1,则${(x+\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$ | |
| B. | 若|x-y2|+|x2-y|≤1,则${(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$ | |
| C. | 若|x+y2|+|x2-y|≤1,则${(x+\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$ | |
| D. | 若|x+y2|+|x2+y|≤1,则${(x-\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com