精英家教网 > 高中数学 > 题目详情
1.设x,y满足约束条件$\left\{\begin{array}{l}{4x-y-2≤0}\\{x-y+1≥0}\\{x≥0}\\{y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)最大值为1,则$\frac{2}{a}+\frac{1}{b}$的最小值8.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得a+2b=1,再由基本不等式求最值.

解答 解:由约束条件$\left\{\begin{array}{l}{4x-y-2≤0}\\{x-y+1≥0}\\{x≥0}\\{y≥0}\end{array}\right.$作出可行域如图,

联立,解得A(1,2).
化目标函数z=ax+by为y=$-\frac{a}{b}x+\frac{z}{b}$,
由图可知,当直线y=$-\frac{a}{b}x+\frac{z}{b}$过A时,直线在y轴上的截距最大,z有最大值为a+2b=1.
∴$\frac{2}{a}+\frac{1}{b}$=($\frac{2}{a}+\frac{1}{b}$)(a+2b)=4+$\frac{4b}{a}+\frac{a}{b}$$≥4+2\sqrt{\frac{4b}{a}•\frac{a}{b}}=8$.
当且仅当a=2b时上式“=”成立.
∴$\frac{2}{a}+\frac{1}{b}$的最小值为8.
故答案为:8.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,训练了利用基本不等式求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|x-3|,g(x)=|x-2|
(1)解不等式f(x)+g(x)<2;
(2)对于实数x,y,若f(x)≤1,g(y)≤1,证明:|x-2y+1|≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,已知点R的极坐标为(2$\sqrt{2}$,$\frac{π}{4}$),曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)求点R的直角坐标,化曲线C的参数方程为普通方程;
(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值,及此时P点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.阅读如图所示的程序框图,运行相应的程序,输出的结果是a=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f'(x)是函数y=f(x)的导数,f''(x)是f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.已知:任何三次函数既有拐点,又有对称中心,且拐点就是对称中心.设$f(x)=\frac{1}{3}{x^3}-2{x^2}+\frac{8}{3}x+2$,数列{an}的通项公式为an=n-1007,则$\sum_{i=1}^{2017}{f({a_i})}$=(  )
A.2017B.2018C.8068D.4034

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{x}{{{e^{x.}}}}$-mx(m∈R).
(Ⅰ)当m=0时,讨论函数f(x)的单调性;
(Ⅱ)当b>a>0时,总有$\frac{f(b)-f(a)}{b-a}$>1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.赌博有陷阱.某种赌博游戏每局的规则是:参与者现在从标有5、6、7、8、9的相同小球中随机摸取一个,将小球上的数字作为其赌金(单位:元);随后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其资金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与资金,则Eξ-Eη=3(元).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.医学上某种还没有完全攻克的疾病,治疗时需要通过药物控制其中的两项指标H和V.现有..三种不同配方的药剂,根据分析,A,B,C三种药剂能控制H指标的概率分别为0.5,0.6,0.75,能控制V指标的概率分别是0.6,0.5,0.4,能否控制H指标与能否控制V指标之间相互没有影响.
(Ⅰ)求A,B,C三种药剂中恰有一种能控制H指标的概率;
(Ⅱ)某种药剂能使两项指标H和V都得到控制就说该药剂有治疗效果.求三种药剂中有治疗效果的药剂种数X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\frac{lnx}{ax}$(a>0).
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若$f(x)<\frac{1}{{\sqrt{x}}}$恒成立,求a的取值范围;
(Ⅲ)证明:总存在x0,使得当x∈(x0,+∞),恒有f(x)<1.

查看答案和解析>>

同步练习册答案