精英家教网 > 高中数学 > 题目详情
8.已知△ABC的三个内角A、B、C所对的边的长分别为a、b、c,设向量$\overrightarrow m$=(a-c,a-b),$\overrightarrow n$=(a+b,c),且$\overrightarrow m$∥$\overrightarrow n$,
(1)求B;
(2)若a=1,b=$\sqrt{7}$,求△ABC的面积.

分析 (1)由$\overrightarrow m$∥$\overrightarrow n$,可得(a-b)(a+b)=(a-c)c,化为:a2+c2-b2=ac,利用余弦定理即可得出.
(2)由余弦定理可得:b2=a2+c2-2accosB,解得c,再利用三角形面积计算公式即可得出.

解答 解:(1)∵$\overrightarrow m$∥$\overrightarrow n$,∴(a-b)(a+b)=(a-c)c,化为:a2+c2-b2=ac,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,
B∈(0,π),解得B=$\frac{π}{3}$.
(2)由余弦定理可得:b2=a2+c2-2accosB,
∴7=1+c2-2c×$\frac{1}{2}$,化为:c2-c-6=0,解得c=3.
∴S=$\frac{1}{2}acsinB$=$\frac{1}{2}×1×3×sin\frac{π}{3}$=$\frac{3\sqrt{3}}{4}$.

点评 本题考查了余弦定理、三角形面积计算公式、向量共线定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列命题正确的是(  )
A.向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,则$\overrightarrow{a}$与$\overrightarrow{b}$都是非零向量
B.任意两个相等的非零向量的始点与终点是一平行四边形的四个顶点
C.$\overrightarrow{a}$与$\overrightarrow{b}$共线,$\overrightarrow{b}$与$\overrightarrow{c}$共线,则$\overrightarrow{a}$与$\overrightarrow{c}$也共线
D.有相同起点的两个非零向量不平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一直三棱柱的每条棱长都是3,且每个顶点都在球O的表面上,则球O的表面积为(  )
A.21πB.24πC.28πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知PC为球O的直径,A、B是球面上两点,且AB=2,∠APC=∠BPC=$\frac{π}{4}$,若球O的表面积是16π,则三棱锥P-ABC的体积是(  )
A.$\frac{4\sqrt{3}}{3}$B.$4\sqrt{3}$C.$\frac{{2\sqrt{3}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义在(-∞,0)∪(0,+∞)上的函数f(x),总有f(mn)=f(m)f(n),且f(x)>0,当x>1时,f(x)>1.
(1)求f(1),f(-1)的值;
(2)判断函数的奇偶性,并证明;
(3)判断函数在(0,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.tan240°+sin(-420°)的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{3\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{{3\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.焦点在x轴上,且焦点到准线的距离是2的抛物线的标准方程是(  )
A.y2=8x或y2=-8xB.x2=8y或x=-8yC.x2=4y或x2=-4yD.y2=4x或y2=-4x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆C的圆心在直线x-2y=0上,且圆C经过点A(2,5)和B(1,4).
(1)求圆C的方程;
(2)求过点P(5,-1)且被圆C截得的弦长为4$\sqrt{3}$的直线l的方程;
(3)若M点是直线x+y+2=0上的动点,过点M作圆C的切线ME,MF,切点分别为E,F,若四边形MECF的面积取得最小值,求此时的点M的坐标及切线ME的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将“NanKai”的6个字母分别写在6张不同的卡片上,任取4张卡片,使得4张卡片上的字母能组成“aiNK”的概率为(  )
A.$\frac{2}{3}$B.$\frac{4}{15}$C.$\frac{2}{15}$D.$\frac{1}{15}$

查看答案和解析>>

同步练习册答案