【题目】(选修4﹣4:坐标系与参数方程)
已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)
【答案】
(1)解:曲线C1的参数方程式 (t为参数),
得(x﹣4)2+(y﹣5)2=25即为圆C1的普通方程,
即x2+y2﹣8x﹣10y+16=0.
将x=ρcosθ,y=ρsinθ代入上式,得.
ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C1的极坐标方程;
(2)解:曲线C2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x2+y2﹣2y=0,
由 ,解得 或 .
∴C1与C2交点的极坐标分别为( , ),(2, ).
【解析】(1)对于曲线C1利用三角函数的平方关系式sin2t+cos2t=1即可得到圆C1的普通方程;再利用极坐标与直角坐标的互化公式即可得到C1的极坐标方程;(2)先求出曲线C2的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标的互化公式即可求出C1与C2交点的极坐标.
科目:高中数学 来源: 题型:
【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租时间不超过两小时免费,超过两个小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人独立来该租车点骑游(各组一车一次).设甲、乙不超过两小时还车的概率分别为 , ;两小时以上且不超过三小时还车的概率分别为 , ;两人租车时间都不会超过四小时.
(1)求甲、乙两人所付租车费用相同的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量 ,求 的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的离心率为 ,F1、F2分别是椭圆的左、右焦点,M为椭圆上除长轴端点外的任意一点,且△MF1F2的周长为4+2 .
(1)求椭圆C的方程;
(2)过点D(0,﹣2)作直线l与椭圆C交于A、B两点,点N满足 (O为原点),求四边形OANB面积的最大值,并求此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线C的参数方程为为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为ρ2﹣4ρcosθ+3=0.
(1)求直线C的普通方程和曲线P的直角坐标方程;
(2)设直线C和曲线P的交点为A、B,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知函数,其中,记函数的定义域为.
(1)求函数的定义域;
(2)若函数的最大值为,求的值;
(3)若对于内的任意实数,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了得到函数 的图象,只需把函数 的图象上所有的点( )
A.向右平行移动 个单位长度
B.向左平行移动 个单位长度
C.向左平行移动 个单位长度
D.向右平行移动 个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了丰富改善居民生活,市招商局引进外商到开发区一次性投资72万元建起了一座蔬菜加工厂.以后每年还需要继续投资:第一年需要要各种经费为12万元,从第二年开始每年所需经费均比上一年增加4万元,该加工厂每年销售总收入为50万元.
(1)若扣除投资及各种经费,该加工厂从第几年开始纯利润为正?
(2)若干年后,外商为开发新项目,对加工厂有两种处理方案:
①若年平均纯利润达到最大值时,便以48万元价格出售该厂;
②若纯利润总和达到最大值时,便以16万元的价格出售该厂.
问:哪一种方案比较合算?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·江苏)已知集合X={1,2,3},Yn={1,2,3...,n}(nN*),Sn={(a,b)|a整除b或b整除a, aX, bYn}, 令f(n)表示集合Sn所包含元素的个数。
(1)写出f(6)的值;
(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com