精英家教网 > 高中数学 > 题目详情

【题目】(2015·江苏)已知集合X={1,2,3},Yn={1,2,3...,n}(nN*),Sn={(a,b)|a整除b或b整除a, aX, bYn}, 令f(n)表示集合Sn所包含元素的个数。
(1)写出f(6)的值;
(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.

【答案】
(1)

13


(2)

f(n)=


【解析】
(1) 根据题意按a分类计数,a=1, b=1,2,3,4,5,6, a=2, b=1,2,4,5, a=3,b=1,3,6 共13个(2)由(1)知a=1, b=1,2,3,...,n, a=2, b=1,2,4,....,2k, a=3,b=1,3,...,3k(kN*), ,所以当n≥6时,f(n)的表达方式要按2x3=6除的余数进行分类,最后不难利用数学归纳法进行证明。
(1)f(6)=13, (2)当n≥6时, f(n)(tN*).
下面用数学归纳法证明:①n=6时,f(6)=6+2+=13, 结论成立。
②假设n=k(k≥6)时结论成立,那么n=k+1时,Sk+1在Sk的基础上新增的元素在(1,k+1), (2, k+1), (3, k+1)中产生,分以下情形讨论。
1)若k+1=6t, 则k=6(t-1)+5, 此时有f(k+1)=f(k)+3=k+2+++3=(k+1)+2++, 结论成立。
2)若k+1=6t+1, 则k=6t, 此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++, 结论成立。
3)若k+1=6t+1, 则k=6t+1, 此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++, 结论成立。
4)若k+1=6t+3, 则k=6t+2, 此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++, 结论成立。
5)若k+1=6t+4, 则k=6t+3, 此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++, 结论成立。
5)若k+1=6t+5, 则k=6t+5, 此时有f(k+1)=f(k)+2=k+2+++1=(k+1)+2++, 结论成立。
综上所述, 结论对满足n≥6的自然数n 均成立。
【考点精析】认真审题,首先需要了解数学归纳法的定义(数学归纳法是证明关于正整数n的命题的一种方法).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(选修4﹣4:坐标系与参数方程)
已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 ,命题 ,使得 .若“ 为真”,“ 为假”,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出结论:x+ ≥n+1(n∈N*),则a=(
A.2n
B.3n
C.n2
D.nn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记数列的前项和为若存在实数,使得对任意的,都有,则称数列和有界数列”. 下列命题正确的是( )

A. 是等差数列,且首项,则和有界数列

B. 是等差数列,且公差,则和有界数列

C. 是等比数列,且公比,则和有界数列

D. 是等比数列,且和有界数列,则的公比

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 .
(1)若 ,且 ,求 的值;
(2)将函数 的图像向右平移 个单位长度得到函数 的图像,若函数 上有零点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是定义在 上的奇函数,且其图象关于直线 对称,当 时, ,则 的值为( )
A.
B.0
C.1
D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系下,已知直线 ( )和圆 .圆 与直线 的交点为 .
(1)求圆 的直角坐标方程,并写出圆 的圆心与半径.
(2)求 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四面体ABCD中,M,N分别是BC和DA的中点,则异面直线MN和CD所成角为

查看答案和解析>>

同步练习册答案