【题目】
已知函数,其中,记函数的定义域为.
(1)求函数的定义域;
(2)若函数的最大值为,求的值;
(3)若对于内的任意实数,不等式恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A.命题“若 ,则 ”的逆否命题为:“若 ,则 ”
B.“ ”是“ ”的充分不必要条件
C.若 且 为假命题,则 、 均为假命题
D.命题 :“ ,使得 ”,则 :“ ,均有 ”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4﹣4:坐标系与参数方程)
已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:①若 ,则 或 ;
② ,都有 ;
③若 是实数,则 是 的充分不必要条件;
④“ ” 的否定是“ ” ;
其中真命题的个数是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两地相距,汽车从甲地行驶到乙地,速度不得超过,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度 ()的平方成正比,比例系数为,固定部分为元,
(1)把全程运输成本(元)表示为速度()的函数,指出定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某水仙花经营部每天的房租、水电、人工等固定成本为1000元,每盆水仙花的进价是10元,销售单价(元) ()与日均销售量(盆)的关系如下表,并保证经营部每天盈利.
20 | 35 | 40 | 50 | |
400 | 250 | 200 | 100 |
20 | 35 | 40 | 50 | |
400 | 250 | 200 | 100 |
(Ⅰ) 在所给的坐标图纸中,根据表中提供的数据,描出实数对的对应点,并确定与的函数关系式;
(Ⅱ)求出的值,并解释其实际意义;
(Ⅲ)请写出该经营部的日销售利润的表达式,并回答该经营部怎样定价才能获最大日销售利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 , , .
(1)若 ,且 ,求 的值;
(2)将函数 的图像向右平移 个单位长度得到函数 的图像,若函数 在 上有零点,求 的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com