精英家教网 > 高中数学 > 题目详情
袋中装有黑球和白球共7个,从中任取2个球都是黑球的概率为
2
7
,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取球后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(Ⅰ)求随机变量ξ的分布列及数学期望;
(Ⅱ)求乙取到白球的概率.
考点:离散型随机变量的期望与方差,古典概型及其概率计算公式
专题:概率与统计
分析:(Ⅰ)设袋中原有n个黑球,由题意知
1
7
=
C
2
n
C
2
7
,求出黑球有4个,白球有3个.由题意,ξ的可能取值为1,2,3,4,5,分别求出其概率,由此能求出ξ的分布列及数学期望.
(Ⅱ)由乙后取,知乙只有可能在第二次,第四次取球,由此能求出乙取到白球的概率.
解答: 解:(Ⅰ)设袋中原有n个黑球,
由题意知
1
7
=
C
2
n
C
2
7
…(1分)
=
n(n-1)
2
7×6
2
=
n(n-1)
7×6

解得n=4或n=-3(舍去) …(3分)
∴黑球有4个,白球有3个.
由题意,ξ的可能取值为1,2,3,4,5…(4分)
P(ξ=1)=
3
7
;P(ξ=2)=
4×3
7×6
=
2
7

P(ξ=3)=
4×3×3
7×6×5
=
6
35

P(ξ=4)=
4×3×2×3
7×6×5×4
=
3
35

P(ξ=5)=
4×3×2×1×3
7×6×5×4×3
=
1
35
…(7分)(错一个扣一分,最多扣3分)
∴ξ的分布列为
ξ 1 2 3 4 5
P
3
7
2
7
6
35
3
35
1
35
…(8分)
所以数学期望为:Eξ=
3
7
+2×
2
7
+3×
6
35
+4×
3
35
+5×
1
35
=2
…(9分)
(Ⅱ)∵乙后取,
∴乙只有可能在第二次,第四次取球,
记乙取到白球为事件A,
P(A)=P(ξ=2)+P(ξ=4)=
2
7
+
3
35
=
13
35
,…(11分)
答:乙取到白球的概率为
13
35
.…(12分)
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有7个座位连成一排,4人就坐,要求恰有两个空位相邻且甲乙两人不坐在相邻座位,则不同的坐法有
 
种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是(  )
A、48cm3
B、98cm3
C、98cm3
D、78cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x,x≤1
-f(x-3),x>1
,则f(2014)的值为(  )
A、
1
4
B、2
C、-
1
4
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
3
2
,顶点M、N的距离为
5
,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点.
(ⅰ)试判断点O到直线AB的距离是否为定值.若是请求出这个定值,若不是请说明理由;
(ⅱ)求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过椭圆L的左顶点A(-3,0)和下顶点B且斜率均为k的两直线l1,l2分别交椭圆于C,D,又l1交y轴于M,l2交x轴于N,且CD与MN相交于点P,当k=3时,△ABM是直角三角形.
(Ⅰ)求椭圆L的标准方程;
(Ⅱ)(i)证明:存在实数λ,使得
AM
OP

(ii)求|OP|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
x+y≤π
x-y≥0
y≥0
所表示的区域为M,函数y=sinx,x∈[0,π]的图象与x轴所围成的区域为N,向M内随机投一个点,则该点落在N内的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x2+x5=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-1)5,则a4=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数F(x)在区间D上的导函数为F1(x),F1(x)在区间D上的导函数为F2(x),如果当x∈D时,F2(x)≥0,则称F(x)在区间D上是下凸函数.已知e是自然对数的底数,f(x)=ex-ax3+3x-6.
(1)若f(x)在[0,+∞)上是下凸函数,求a的取值范围;
(2)设M(x)=f(x)+f(-x)+12,n是正整数,求证:M(1)M(2)…M(n)>
(en+1+2)n

查看答案和解析>>

同步练习册答案