精英家教网 > 高中数学 > 题目详情
4.如图,在正方体ABCD-A1B1C1D1中,B1D与C1D1所成角的正弦值是(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

分析 连结A1D,由A1B1∥C1D1,得∠A1DB1是B1D与C1D1所成角,由此能求出B1D与C1D1所成角的正弦值.

解答 解:在正方体ABCD-A1B1C1D1中,
连结A1D,∵A1B1∥C1D1
∴∠A1DB1是B1D与C1D1所成角,
设正方体ABCD-A1B1C1D1中棱长为1,
${A}_{1}D=\sqrt{2}$,B1D=$\sqrt{1+1+1}$=$\sqrt{3}$,
∴cos∠A1DB1=$\frac{{A}_{1}{{B}_{1}}^{2}+D{{B}_{1}}^{2}-{A}_{1}{D}^{2}}{2×{A}_{1}{{B}_{1}}^{\;}×{B}_{1}D}$=$\frac{1+3-2}{2×1×\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
sin$∠{A}_{1}D{B}_{1}=\sqrt{1-(\frac{\sqrt{3}}{3})^{2}}$=$\frac{\sqrt{6}}{3}$.
∴B1D与C1D1所成角的正弦值是$\frac{\sqrt{6}}{3}$.
故选:A.

点评 本题考查线线角的正弦值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知集合P{a,b},Q={-1,0,1},则从集合P到集合Q的映射共有9种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列从集合A到集合B的对应关系中,既是映射关系又是函数关系的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校高中一年级组织学生参加了环保知识竞赛,并抽取了其中20名学生的成绩进行分析.右图是这20名学生竞赛成绩(单位:分)的频率分布直方图,其分组为[100,110),[110,120),…,[130,140),[140,150].
(Ⅰ)求图中a的值及成绩分别落在[100,110)与[110,120)中的学生人数;
(Ⅱ) 学校决定从成绩在[110,120)的学生中任选2名进行座谈,求这2人的成绩都在[110,120)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a>b>0,c<0,则下列不等式成立的是(  )
A.a-c<b-cB.ac>bcC.$\frac{a}{c}>\frac{b}{c}$D.$\frac{c}{a}>\frac{c}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)的定义域为(0,+∞),且满足f(x)+x•f'(x)>0(f'(x)是f(x)的导函数),则不等式(x-1)f(x2-1)<f(x+1)的解集为(  )
A.(-1,2)B.(1,2)C.(1,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)如图,△AOB为等腰直角三角形,OA=1,OC为斜边AB的高,P为线段OC的中点,求$\overrightarrow{AP}$•$\overrightarrow{OP}$的值;
(2)已知2sin2α=1+cos2α,求tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x+aeπ(a∈R).
(1)讨论函数f(x)的单调性;
(2)当x<0,a≤1时,证明:x2+(a+1)x>f'(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x+$\frac{a}{x}$.且f(1)=5.
(1)求a的值;
(2)判断函数f(x)的奇偶性;
(3)判断函数f(x)在(2,+∞)上的单调性并用定义证明你的结论.

查看答案和解析>>

同步练习册答案