精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=x+aeπ(a∈R).
(1)讨论函数f(x)的单调性;
(2)当x<0,a≤1时,证明:x2+(a+1)x>f'(x).

分析 (1)求出函数的导数,通过a与0的大小讨论,导函数的符号,得到函数的单调性.
(2)令F(x)=x2+(a+1)x-xf'(x),化简F(x)的表达式,令H(x)=x+a-aex,求出H'(x)=1-aex,判断H(x)在(-∞,0)上为增函数,得到H(x)<H(0)=0,然后证明结果.

解答 解:(1)由f(x)=x+aex可得f'(x)=1+aex
当a≥0时,f'(x)>0,则函数f(x)在(-∞,+∞)上为增函数,
当a<0时,f'(x)>0可得$x<ln({-\frac{1}{a}})$,由f'(x)<0可得$x>ln({-\frac{1}{a}})$;
则函数f(x)在$({-∞,ln({-\frac{1}{a}})})$上为增函数,在$({ln({-\frac{1}{a}}),+∞})$上为减函数…(4分)
(2)证明:令F(x)=x2+(a+1)x-xf'(x),
则F(x)=x2+(a+1)x-xf'(x)=x2+ax-axex=x(x+a-aex),
令H(x)=x+a-aex,则H'(x)=1-aex
∵x<0,∴0<ex<1,又a≤1,∴1-aex≥1-ex>0,
∴H(x)在(-∞,0)上为增函数,则H(x)<H(0)=0,即x+a-aex<0,
由x<0可得F(x)=x(x+a-aex)>0,所以x2+(a+1)x>xf'(x)…(12分)

点评 本题考查函数的导数的综合应用,函数的单调性以及构造法的应用,函数的最值的求法,考查分类讨论以及转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)是一次函数,g(x)是反比例函数,且满足f[f(x)]=x+2,g(1)=-1
(1)求函数f(x)和g(x);
(2)设h(x)=f(x)+g(x),判断函数h(x)在(0,+∞)上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在正方体ABCD-A1B1C1D1中,B1D与C1D1所成角的正弦值是(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示是一个长方体截去一个角得到的几何体的直观图及正视图和侧视图(单位:cm).
(1)画出该多面体的俯视图,并标上相应的数据;
(2)设M为AB上的一点,N为BB’中点,且AM=4,证明:平面GEF∥平面DMN.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知偶函数f(x)的图象关于直线x=3对称,且f(5)=1,则f(-1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C所对的边分别是a,b,c,又I为△ABC的内心,且b-c=4,b+c-a=6,则$\overrightarrow{AI}$×$\overrightarrow{BC}$=(  )
A.6B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx+a的最大值为2.
(1)求a的值,并求函数f(x)图象的对称轴方程;
(2)将函数y=f(x)的图象向右平移$\frac{π}{12}$个单位,得到函数y=g(x)的图象,求函数g(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等比数列{an}的前n项和为Sn,公比q>0,S2=2a2-2,S3=a4-2.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{n}{{a}_{n}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若关于x的不等式$({ax-20})lg\frac{2a}{x}≤0$对任意的正实数x恒成立,则a的取值范围是(  )
A.[-10,10]B.$[-\sqrt{10},\sqrt{10}]$C.$(-∞,\sqrt{10}]$D.$\left\{{\sqrt{10}}\right\}$

查看答案和解析>>

同步练习册答案