| A. | (-1,2) | B. | (1,2) | C. | (1,+∞) | D. | (-∞,2) |
分析 根据条件构造函数g(x)=xf(x),求函数的导数,利用函数单调性和导数之间的关系进行转化求解即可.
解答 解:设g(x)=xf(x),则g′(x)=f(x)+x•f'(x),
∵f(x)+x•f'(x)>0,∴g′(x)>0,
即g(x)在(0,+∞)为增函数,
则不等式(x-1)f(x2-1)<f(x+1)等价为(x-1)(x+1)f(x2-1)<(x+1)f(x+1),
即(x2-1)f(x2-1)<(x+1)f(x+1),
即g(x2-1)<g(x+1),
∵g(x)在(0,+∞)为增函数,
∴$\left\{\begin{array}{l}{{x}^{2}-1>0}\\{x+1>0}\\{{x}^{2}-1<x+1}\end{array}\right.$,即$\left\{\begin{array}{l}{x>1或x<-1}\\{x>-1}\\{-1<x<2}\end{array}\right.$,即1<x<2,
故不等式的解集为(1,2),
故选:B.
点评 本题主要考查不等式的求解,根据条件构造函数,利用导数研究函数的单调性是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -3 | C. | -4 | D. | -5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 直角三角形 | ||
| C. | 等腰直角三角形 | D. | 等腰三角形或直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=-|sin x| | B. | f(x)=cos(-|x|) | C. | f(x)=sin|x| | D. | f(x)=x•sin|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 8 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com