分析 (1)由正弦定理化简已知,整理可得:b2+c2-a2=bc,由余弦定理可得cosA=$\frac{1}{2}$,结合范围A∈(0,π),即可得解A的值.
(2)由余弦定理,基本不等式可得:bc≤48,可得:b+c≤8$\sqrt{3}$,结合三角形两边之和大于第三边,即可得解b+c的取值范围.
解答 解:(1)∵$\frac{sinB}{sinA+sinC}+\frac{sinC}{sinA+sinB}$=1.
∴由正弦定理可得:$\frac{b}{a+c}+\frac{c}{a+b}$=1,整理可得:b2+c2-a2=bc,
∴由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$.
(2)∵A=$\frac{π}{3}$,a=4$\sqrt{3}$,
∴由余弦定理a2=b2+c2-2bc,可得:48=b2+c2-bc≥2bc-bc=bc,解得:bc≤48,当且仅当b=c=4$\sqrt{3}$时等号成立,
又∵48=b2+c2-bc=(b+c)2-3bc,可得:(b+c)2=48+3bc≤192,
∴可得:b+c≤8$\sqrt{3}$,
又∵b+c>a=4$\sqrt{3}$,
∴b+c∈(4$\sqrt{3}$,8$\sqrt{3}$].
点评 本题主要考查了正弦定理,余弦定理,基本不等式,三角形两边之和大于第三边在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (-1,2) | B. | (1,2) | C. | (1,+∞) | D. | (-∞,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com