分析 ( I)根据定义域的范围带值计算求出a,b即可得f(x)的解析式.
( II)根据一次函数和指数函数的性质画图象,通过图象得结论.
解答 解:( I)函数f(x)=$\left\{\begin{array}{l}{ax+b,x<0}\\{{2}^{x},x≥0}\end{array}\right.$,
由f(-2)=3,f(-1)=f(1).
则有$\left\{\begin{array}{l}{-2a+b=3}\\{-a+3=2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-1}\\{b=1}\end{array}\right.$
则f(x)=$\left\{\begin{array}{l}{-x+1,x<0}\\{{2}^{x},x≥0}\end{array}\right.$,
(Ⅱ)f(x)的图象如图:![]()
通过函数f(x)的图象可知值域为[1,+∞).
点评 本题考查了分段函数的解析式的求法和函数的画法.通过图象读性质.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{c}$=3$\overrightarrow{a}$-$\overrightarrow{b}$ | B. | $\overrightarrow{c}$=3$\overrightarrow{b}$-$\overrightarrow{a}$ | C. | $\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{a}$ | D. | $\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4,-10 | B. | 4,-10 | C. | 10,4 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1005 | B. | 1010 | C. | 2009 | D. | 2010 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,2) | B. | (1,2) | C. | (1,+∞) | D. | (-∞,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com