精英家教网 > 高中数学 > 题目详情
13.(1)计算:2log32-log3$\frac{32}{9}$+log38-25${\;}^{lo{g}_{5}3}$;
(2)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-7.8)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$+($\frac{2}{3}$)-2

分析 (1)利用对数的运算性质即可得出.
(2)利用指数的运算性质即可得出.

解答 解:(1)原式=$lo{g}_{3}\frac{{2}^{2}×8}{\frac{32}{9}}$-${5}^{2lo{g}_{5}3}$
=2-32=-7.
(2)原式=$(\frac{3}{2})^{2×\frac{1}{2}}$-1-$(\frac{3}{2})^{3×\frac{2}{3}}$+$(\frac{3}{2})^{2}$
=$\frac{3}{2}$-1-$\frac{9}{4}$+$\frac{9}{4}$
=$\frac{1}{2}$.

点评 本题考查了对数与指数幂的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知曲线C在y轴右边,C上的每一点到点F(1,0)的距离比到y轴的距离多1.
(Ⅰ)求曲线C的方程;
(Ⅱ)已知过点M(m,0)(m>0)的直线l与曲线C有两交点A,B,若$\overrightarrow{FA}•\overrightarrow{FB}$<0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数h(x)=ax3-1(a∈R),g(x)=lnx.
(I)若f(x)=h(x)+3xg(x)图象过点(1,-1)时,求f(x)的单调区间;
(II)函数F(x)=$({a-\frac{1}{3}}){x^3}$+$\frac{1}{2}{x^2}$g(a)-h(x)-1,当a>${e^{\frac{10}{3}}}$(e为自然对数的底数)时,函数F(x)过点A(1,m)的切线F(x)切于点B(x0,F(x0))
①试将m表示成x0的表达式.
②若切线至少有2条,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=$\left\{\begin{array}{l}{ax+b,x<0}\\{{2}^{x},x≥0}\end{array}\right.$,且f(-2)=3,f(-1)=f(1).
( I)求f(x)的解析式;
( II)画出f(x)的图象(不写过程)并求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,假命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为$\frac{3}{2}$,其中A(a,0),B(0,-b).
(1)求双曲线的方程;
(2)若B1是双曲线虚轴在y轴正半轴上的端点,过B作直线与双曲线交于M,N两点,求B1M⊥B1N时,直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)是一次函数,g(x)是反比例函数,且满足f[f(x)]=x+2,g(1)=-1
(1)求函数f(x)和g(x);
(2)设h(x)=f(x)+g(x),判断函数h(x)在(0,+∞)上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=-$\frac{1}{2}$x2+x在定义域内存在区间[m,n]上的值域为[3m,3n],则m+n的值是(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示是一个长方体截去一个角得到的几何体的直观图及正视图和侧视图(单位:cm).
(1)画出该多面体的俯视图,并标上相应的数据;
(2)设M为AB上的一点,N为BB’中点,且AM=4,证明:平面GEF∥平面DMN.

查看答案和解析>>

同步练习册答案