精英家教网 > 高中数学 > 题目详情
3.已知曲线C在y轴右边,C上的每一点到点F(1,0)的距离比到y轴的距离多1.
(Ⅰ)求曲线C的方程;
(Ⅱ)已知过点M(m,0)(m>0)的直线l与曲线C有两交点A,B,若$\overrightarrow{FA}•\overrightarrow{FB}$<0恒成立,求m的取值范围.

分析 (Ⅰ)依题意:曲线C上的任意点到点F(1,0)的距离等于到直线x=-1的距离,由此能求出曲线C的方程.
(Ⅱ)设过点M(m,0),(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2),设l的方程为x=ty+m,与抛物线方程联立,得y2-4ty-4m=0,利用$\overrightarrow{FA}•\overrightarrow{FB}$<0恒成立,由此能求出m的取值范围.

解答 解:(Ⅰ)依题意:曲线C上的任意点到点F(1,0)的距离等于到直线x=-1的距离,
∴曲线C的方程是y2=4x,x>0.
(Ⅱ)设过点M(m,0),(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2),
设l的方程为x=ty+m,
与抛物线方程联立,得y2-4ty-4m=0,
△=16t2+16m>0,y1+y2=4t,y1y2=-4m,①
又$\overrightarrow{FA}$=(x1-1,y1),$\overrightarrow{FB}$=(x2-1,y2),
∵$\overrightarrow{FA}•\overrightarrow{FB}$<0,∴(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y2<0,②
等价于$\frac{1}{16}$(y1y2)+2y1y2-$\frac{1}{4}$[(y1+y22-2y1y2]+1<0
由①式,m2-6m+1-4t2<0,
∵4t2≥0
∴只需m2-6m+1<0即可.
即:3-2$\sqrt{2}$<m<3+2$\sqrt{2}$,
∴所求m的取值范围为3-2$\sqrt{2}$<m<3+2$\sqrt{2}$.

点评 本题考查曲线方程的求法,考查满足条件的实数是否存在的判断,解题时要认真审题,注意等价转化思想和函数方程思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D.测得∠BCD=15°,∠BDC=30°,CD=40米,并在点C测得塔顶A的仰角为60°,则塔高AB=20$\sqrt{6}$米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=sinx-cosx,x∈[0,+∞).
(1)证明:$sinx-f(x)≥1-\frac{x^2}{2}$;
(2)证明:当a≥1时,f(x)≤eax-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.化简求值
(1)化简$\frac{x-1}{{{x^{\frac{2}{3}}}+{x^{\frac{1}{3}}}+1}}+\frac{x+1}{{{x^{\frac{1}{3}}}+1}}-\frac{{x-{x^{\frac{1}{3}}}}}{{{x^{\frac{1}{3}}}-1}}$;
(2)若2lg(3x-2)=lgx+lg(3x+2),求${log_{\sqrt{x}}}\sqrt{2\sqrt{2\sqrt{2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC的顶点B、C在椭圆$\frac{{x}^{2}}{3}$+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是(  )
A.2$\sqrt{3}$B.4$\sqrt{3}$C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知异面直线a,b所成角为60度,A为空间一点,则过点A与a,b都成60度角的直线有(  )条.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|x2+x-2≤0},B={y|y=2x,x∈R},则A∩B等于(  )
A.B.[1,+∞)C.(0,2]D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,$\overrightarrow{AB}$=2$\overrightarrow{BC},\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则下列等式中成立的是(  )
A.$\overrightarrow{c}$=3$\overrightarrow{a}$-$\overrightarrow{b}$B.$\overrightarrow{c}$=3$\overrightarrow{b}$-$\overrightarrow{a}$C.$\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{a}$D.$\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)计算:2log32-log3$\frac{32}{9}$+log38-25${\;}^{lo{g}_{5}3}$;
(2)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-7.8)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$+($\frac{2}{3}$)-2

查看答案和解析>>

同步练习册答案