精英家教网 > 高中数学 > 题目详情
4.已知函数h(x)=ax3-1(a∈R),g(x)=lnx.
(I)若f(x)=h(x)+3xg(x)图象过点(1,-1)时,求f(x)的单调区间;
(II)函数F(x)=$({a-\frac{1}{3}}){x^3}$+$\frac{1}{2}{x^2}$g(a)-h(x)-1,当a>${e^{\frac{10}{3}}}$(e为自然对数的底数)时,函数F(x)过点A(1,m)的切线F(x)切于点B(x0,F(x0))
①试将m表示成x0的表达式.
②若切线至少有2条,求实数m的值.

分析 (Ⅰ)求出f(x)的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)求出函数的导数,求出B处的切线方程,根据函数的单调性求出a的范围即可.

解答 解:(Ⅰ)由已知f(x)=h(x)+3xg(x)=ax3-1+3xlnx,
又f(x)过点(1,-1),所以a=0,
∴f(x)=3xlnx-1,且定义域为(0,+∞),
f′(x)=3lnx+3=3(lnx+1),
令f′(x)>0,解得:x>$\frac{1}{e}$,令f′(x)<0,解得:0<x<$\frac{1}{e}$,
故f(x)=3xlnx-1在(0,$\frac{1}{e}$)上是减函数,在($\frac{1}{e}$,+∞)上是增函数.…(4分)
(Ⅱ)函数F(x)=(a-$\frac{1}{3}$)x3+$\frac{1}{2}$x2g(a)-h(x)-1,
F(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2lna,
①由已知切点为B(x0,-$\frac{1}{3}$${{x}_{0}}^{3}$+$\frac{1}{2}$${{x}_{0}}^{2}$lna),
F′(x)=-x2+xlna,F′(x0)=-${{x}_{0}}^{2}$+x0lna,
则B处的切线方程为:
y-(-$\frac{1}{3}$${{x}_{0}}^{3}$+$\frac{1}{2}$${{x}_{0}}^{2}$lna)=(-${{x}_{0}}^{2}$+x0lna)(x-x0),将A点坐标代入得
m-(-$\frac{1}{3}$${{x}_{0}}^{3}$+$\frac{1}{2}$${{x}_{0}}^{2}$lna)=(-${{x}_{0}}^{2}$+x0lna)(1-x0),
所以m=$\frac{2}{3}$${{x}_{0}}^{3}$-(1+$\frac{1}{2}$lna)${{x}_{0}}^{2}$+x0lna,(*)    …(8分)
②据题意,原命题等价于关于x0的方程(*)至少有2个不同的解.
设φ(x)=$\frac{2}{3}$x3-(1+$\frac{1}{2}$lna)x2+xlna,
φ′(x)=2x2-(2+lna)x+lna=(x-1)(2x-lna),
因为a>${e}^{\frac{10}{3}}$,所以$\frac{1}{2}$lna>$\frac{5}{3}$>1,
当x∈(-∞,1)和($\frac{1}{2}$lna,+∞)时,φ′(x)>0,φ(x)为增函数;
当x∈(1,$\frac{1}{2}$lna)时,φ′(x)<0,φ(x)为减函数;
所以φ(x)的极大值为φ(1)=$\frac{1}{2}$lna-$\frac{1}{3}$,
φ(x)的极小值为φ($\frac{1}{2}$lna)=-$\frac{1}{24}$ln3a+$\frac{1}{4}$ln2a,
设lna=t,t>$\frac{10}{3}$,
则原命题等价于$\left\{\begin{array}{l}{m≤\frac{1}{2}lna-\frac{1}{3}=\frac{1}{2}t-\frac{1}{3}}\\{m≥-{\frac{1}{24}ln}^{3}a+{\frac{1}{4}ln}^{2}a=-{\frac{1}{24}t}^{3}+{\frac{1}{4}t}^{2}}\end{array}\right.$对t>$\frac{10}{3}$恒成立,…(12分)
所以由m≤$\frac{1}{2}$t-$\frac{1}{3}$对t>$\frac{10}{3}$恒成立,得m≤$\frac{4}{3}$;        (1)
记s(t)=-$\frac{1}{24}$t3+$\frac{1}{4}$t2,s′(t)=-$\frac{1}{8}$t2+$\frac{1}{2}$t=$\frac{1}{2}$t(1-$\frac{1}{4}$t),
所以t>$\frac{10}{3}$时,s(t)的最大值为s(4)=$\frac{4}{3}$,由m≥-$\frac{1}{24}$t3+$\frac{1}{4}$t2对t>$\frac{10}{3}$恒成立,得m≥$\frac{4}{3}$. (2)
由(1)(2)得,m=$\frac{4}{3}$.
综上,当a>${e}^{\frac{10}{3}}$,实数m的值为$\frac{4}{3}$时,函数F(x)过点A(1,m)的切线至少有2条.…(14分)

点评 本题考查了切线方程问题,函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知f(x)=sinx-cosx,x∈[0,+∞).
(1)证明:$sinx-f(x)≥1-\frac{x^2}{2}$;
(2)证明:当a≥1时,f(x)≤eax-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|x2+x-2≤0},B={y|y=2x,x∈R},则A∩B等于(  )
A.B.[1,+∞)C.(0,2]D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,$\overrightarrow{AB}$=2$\overrightarrow{BC},\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则下列等式中成立的是(  )
A.$\overrightarrow{c}$=3$\overrightarrow{a}$-$\overrightarrow{b}$B.$\overrightarrow{c}$=3$\overrightarrow{b}$-$\overrightarrow{a}$C.$\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{a}$D.$\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图所示的数阵中,用A(m,n)表示第m行的第n个数,依此规律,则A(9,2)=$\frac{19}{30}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知奇函数f(x)在区间[1,6]是增函数,且最大值为10,最小值为4,则其在[-6,-1]上的最大值、最小值分别是(  )
A.-4,-10B.4,-10C.10,4D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合P{a,b},Q={-1,0,1},则从集合P到集合Q的映射共有9种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)计算:2log32-log3$\frac{32}{9}$+log38-25${\;}^{lo{g}_{5}3}$;
(2)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-7.8)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$+($\frac{2}{3}$)-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校高中一年级组织学生参加了环保知识竞赛,并抽取了其中20名学生的成绩进行分析.右图是这20名学生竞赛成绩(单位:分)的频率分布直方图,其分组为[100,110),[110,120),…,[130,140),[140,150].
(Ⅰ)求图中a的值及成绩分别落在[100,110)与[110,120)中的学生人数;
(Ⅱ) 学校决定从成绩在[110,120)的学生中任选2名进行座谈,求这2人的成绩都在[110,120)的概率.

查看答案和解析>>

同步练习册答案